Productivity Gradient (productivity + gradient)

Distribution by Scientific Domains

Kinds of Productivity Gradient

  • natural productivity gradient


  • Selected Abstracts


    Interannual changes in folivory and bird insectivory along a natural productivity gradient in northern Patagonian forests

    ECOGRAPHY, Issue 1 2004
    C. Noemi Mazía
    Trophic regulation models suggest that the magnitude of herbivory and predation (top-down forces) should vary predictably with habitat productivity. Theory also indicates that temporal abiotic variation and within-trophic level heterogeneity both affect trophic dynamics, but few studies addressed how these factors interact over broad-scale environmental gradients. Here we document herbivory from leaf-feeding insects along a natural rainfall/productivity gradient in Nothofagus pumilio forests of northern Patagonia, Argentina, and evaluate the impact of insectivorous birds on foliar damage experienced by tree saplings at each end of the gradient. The study ran over three years (1997,2000) comprising a severe drought (1998,1999), which allowed us to test how climatic events alter top-down forces. Foliar damage tended to increase towards the xeric, least productive forests. However, we found a predictable change of insect guild prevalence across the forest gradient. Leaf miners accounted for the greater damage recorded in xeric sites, whereas leaf chewers dominated in the more humid and productive forests. Interannual folivory patterns depended strongly on the feeding guild and forest site. Whereas leaf-miner damage decreased during the drought in xeric sites, chewer damage increased after the drought in the wettest site. Excluding birds did not affect leaf damage from miners, but generally increased chewer herbivory on hydric and xeric forest saplings. Indirect effects elicited by bird exclusion became most significant after the drought, when total folivory levels were higher. Thus, interannual abiotic heterogeneity markedly influenced the amount of folivory and strength of top-down control observed across the forest gradient. Moreover, our results suggest that spatial turnovers between major feeding guilds may need be considered to predict the dynamics of insect herbivory along environmental gradients. [source]


    Taxonomic level, trophic biology and the regulation of local abundance

    GLOBAL ECOLOGY, Issue 3 2001
    Michael Kaspari
    Abstract 1Taxocenes , monophyletic ecological assemblages , are a key focus of macroecology. Abundance (individuals per area) is a basic property of taxocenes but has received less attention than diversity, although the two are probably related. Abundance reflects a taxocene's ability to harvest and sequester available energy and divide it among individuals. This paper explores how two properties of all taxocenes , trophic makeup and taxonomic level (e.g. genus, tribe, subfamily, family , ) , may contribute to patterns of local abundance at geographical scales. 2Forty-nine ground ant taxocenes, in habitats ranging from New World deserts to rain forests, were surveyed along a three-orders of magnitude productivity gradient using transects of 30 1-m2 quadrats at each site. Abundance , the number of nests per transect , varied over two orders of magnitude. 3Over 80% of the genera collected were omnivores. However, herbivore, omnivore, and predator taxa were added to ant taxocenes in roughly 1 order of magnitude steps up the productivity gradient. Specialist detritivores were added last. 4Net primary productivity and mean monthly temperature both consistently entered regression models predicting abundance. However, while productivity was the dominant predictor of abundance for higher taxa (families, subfamilies), temperature was the dominant predictor of abundance for lower taxa (tribes, genera). The answer to the question ,What regulates the abundance of a taxocene?' is thus sensitive to the taxonomic level of analysis. 5These data support the following scenario. Lower taxa are abiotic specialists given the insufficient number of genomes and generations required for the exploration of the entire abiotic envelope. Higher taxa, in contrast, consist of suites of abiotic specialists arrayed along the entire productivity gradient, with access to productivity everywhere the taxon occurs. If this scenario is true, individual species may respond to global changes in temperature; the higher taxa they belong to may most respond to global changes in productivity. [source]


    Measuring the components of competition along productivity gradients

    JOURNAL OF ECOLOGY, Issue 2 2007
    MARK V. WILSON
    Summary 1Controversy surrounds the measurement of competition intensity. Moreover, when biomass varies systematically along productivity and other environmental gradients, common indices of competitive outcome mask important ecological interactions. 2This study presents two indices derived from how neighbours interact with target plants. The first, relative crowding, increases directly with the abundance of neighbours present and decreases inversely with the potential size and vigour of the target plant itself. The second, interaction strength, is the integral of suppression of the target by neighbours over the range of neighbour abundance. Relative crowding and interaction strength are derived independently, but when multiplied produce the commonly used relative competitive index, showing the biological underpinnings of the relative competition index in terms of crowding and strength of interaction. Since the new indices of relative crowding and interaction strength explicitly account for the amount of neighbour biomass, they serve as a valid method to track the effects of changing habitat conditions on the components of competition. 3The new indices are applied to three published data sets. In each case, relative crowding increased with standing crop. In one case competition was reported as unchanged along a productivity gradient, whereas the new indices show that relative crowding and interaction strength both had significant patterns, but their effects were counteracting. These results do not fit current theories of competition. Further empirical studies are needed to see if competition theory needs revision. 4Separating the mechanisms of competition into relative crowding and strength of interaction reveals previously hidden patterns that help bring to light underlying processes of competition along productivity gradients. [source]


    Photon flux partitioning among species along a productivity gradient of an herbaceous plant community

    JOURNAL OF ECOLOGY, Issue 6 2006
    ANNE AAN
    Summary 1We studied light partitioning among species along the natural productivity gradient of herbaceous vegetation with an above-ground dry mass of 150,490 g m,2. The aim was to investigate how the light capturing ability per above-ground biomass and leaf nitrogen changes in an entire community and to reveal whether different species respond similarly to changes in soil conditions and competition. 2Species becoming dominant at high soil resources have intrinsically low leaf area ratios (LAR) and lower tissue nitrogen concentration, and hence relatively high nitrogen use efficiency. These traits lead to dominance when soil resources allow rapid growth so that benefits arising from the ability to locate leaves above neighbours and thereby increasing asymmetry of competition, become more crucial. 3In contrast to our expectations, above-ground efficiency of nitrogen use on the community level (aNUE) increased along the productivity gradient. Species level nitrogen use efficiency was unaffected by variation in site productivity; the increase in community aNUE was solely as a consequence of changes in species composition. 4Light absorption per unit of above-ground mass, ,M, declined significantly at the community level and also in most species, indicating that light use efficiency increased with increased site productivity and LAI. 5Light absorption per unit of leaf nitrogen, ,N, as an indicator of the ratio NUE/LUE showed no clear pattern on the community level because both NUE and LUE tend to increase with increased productivity. At the species level, ,N tends to decrease because NUE did not change with stand productivity. 6Some subordinate species responded by enlarging their LAR to increased competition. Additionally, these species were the most responsive in their leaf chlorophyll/nitrogen ratio to changes in light conditions, which shows that physiological plasticity is important for species that are unable to compete for light with the ability to position their leaves above those of other species. 7This study shows how plasticity in above-ground growth pattern and nitrogen allocation differs between species with respect to increased soil fertility and competition, leading to distinctive strategies of survival. Light partitioning analysis reveals that increased competition for light, resulting in changes in species composition, is the key factor that leads to decoupling of species and community level acclimation. [source]


    Demography and population dynamics of Drosera anglica and D. rotundifolia

    JOURNAL OF ECOLOGY, Issue 1 2004
    J.-F. Nordbakken
    Summary 1We studied demography and population dynamics of the sympatric perennial herbs Drosera anglica and D. rotundifolia on a boreal bog in SE Norway. Dry mass of 2872 D. anglica plants and 2467 D. rotundifolia plants (estimated from field morphological measurements) was used to classify plants into five species-specific size classes. Demographic changes within these two populations were followed from 1995 to 1999, and within segments (quartiles) along the water table gradient and the peat productivity gradient. 2Mortality was strongly size dependent, and varied between years, for both species; it was high for seedlings, low for the smallest mature rosettes and increased again for the largest mature rosettes. The proportion of fertile rosettes increased with increasing rosette size. Fecundity varied considerably between years, but little relative to gradient position. 3Growth rate (,) was > 1, except in the second year, when it fell to 0.572 for D. anglica and 0.627 for D. rotundifolia . For D. anglica small, but significant, differences were found between the two extremities of the water table gradient, and for D. rotundifolia between the second and the uppermost quartile. There was a tendency for D. anglica populations to have a lower growth rate in the most productive sites, whereas D. rotundifolia grew less on both low and high peat productivity. Elasticity analysis showed that stasis and size increase (primarily within mature stages) made major contributions to , for D. anglica in all years. 4The variance in population growth rate (var ,) was high between years, and higher for D. anglica than for D. rotundifolia , while the variance between quartiles along the two main gradients was low. Life-table response experiment (LTRE) analyses revealed that for both species, differences in probabilities of transitions within mature stages, and in growth to larger stages, contributed most to var ,. 5The effects of global warming are uncertain: drier growing seasons would affect Drosera populations negatively, while initially positive responses to a wetter climate may be balanced by competition from increased Sphagnum growth. [source]


    Grazing effect on diversity of annual plant communities in a semi-arid rangeland: interactions with small-scale spatial and temporal variation in primary productivity

    JOURNAL OF ECOLOGY, Issue 6 2002
    Yagil Osem
    Summary 1The interactive effect of grazing and small-scale variation in primary productivity on the diversity of an annual plant community was studied in a semiarid Mediterranean rangeland in Israel over 4 years. The response of the community to protection from sheep grazing by fenced exclosures was compared in four neighbouring topographic sites (south- and north-facing slopes, hilltop and wadi (dry stream) shoulders), differing in vegetation, physical characteristics and soil resources. The herbaceous annual vegetation was highly diverse, including 128 species. Average small-scale species richness of annuals ranged between 5 and 16 species within a 20 × 20 cm quadrat, and was strongly affected by year and site. 2Above-ground potential productivity at peak season (i.e. in fenced subplots) was typical of semiarid ecosystems (10,200 g m,2), except on wadi shoulders (up to 700 g m,2), where it reached the range of subhumid grassland ecosystems. Grazing increased richness in the high productivity site (i.e. wadi), but did not affect, or reduced, it in the low productivity sites (south- and north-facing slopes, hilltop). Under grazing, species richness was positively and linearly related to potential productivity along the whole range of productivity. Without grazing, this relationship was observed only at low productivity (< 200 g m,2). 3The effect of grazing along the productivity gradient on different components of richness was analysed. At low productivity, number of abundant, common and rare species all tended to increase with productivity, both with and without grazing. Rare species increased three times compared with common and abundant species. At high productivity, only rare species continued to increase with productivity under grazing, while in the absence of grazing species number in the different abundance groups was not related to productivity. 4In this semiarid Mediterranean rangeland, diversity of the annual plant community is determined by the interaction between grazing and small-scale spatial and temporal variation in primary productivity, operating mainly on the less abundant species in the community. [source]


    Effects of resource competition and herbivory on plant performance along a natural productivity gradient

    JOURNAL OF ECOLOGY, Issue 2 2000
    René Van Der Wal
    Summary 1,The effects of resource competition and herbivory on a target species, Triglochin maritima, were studied along a productivity gradient of vegetation biomass in a temperate salt marsh. 2,Transplants were used to measure the impact of grazing, competition and soil fertility over two growing seasons. Three parts of the marsh were selected to represent different successional stages; Triglochin reached local dominance at intermediate biomass of salt-marsh vegetation. At each stage, three competition treatments (full plant competition, root competition only, and no competition) and three grazing treatments (full grazing, no grazing on Triglochin, and no grazing on Triglochin or neighbours) were applied to both seedlings and mature plants. 3,Competition and herbivory reduced biomass and flowering of Triglochin. The impact of grazing was strongest at the stage with the lowest biomass, while both herbivory and competition had a significant impact at the stage with the highest biomass. When plants were protected from direct herbivory, competition operated at all three successional stages. 4,Grazing reduced light competition when vegetation biomass was low or intermediate, but at high biomass there was competition for light even when grazing occurred. Herbivore exclusion increased the effects of plant competition. Except at low biomass, the negative impact of plant competition on Triglochin performance was greater than the positive effect of not being grazed. 5,Grazing played a minor role in seedling survival and establishment which were largely controlled by competitive and facilitative effects. 6,Once established, the persistence of Triglochin will be determined largely by grazing. Intense grazing in the younger marsh and increasing competition for light in the older marsh will restrict the distribution to sites with intermediate biomass. [source]


    Limnology and culture-based fisheries in non-perennial reservoirs in Sri Lanka

    LAKES & RESERVOIRS: RESEARCH AND MANAGEMENT, Issue 3 2005
    U. Asanka D. Jayasinghe
    Abstract This study was carried out to investigate the possibility of using the limnological characteristics of non-perennial reservoirs in Sri Lanka for the future management of culture-based fisheries. Forty-five reservoirs were randomly selected to study their limnology, out of which 32 were stocked with fish fingerlings of Chinese and Indian carps, tilapia and freshwater prawn at stocking densities ranging from 218,4372 fingerlings ha,1. Of these, 23 reservoirs were harvested at the end of the culture period (6,10 months). Thirteen limnological parameters were measured during the water retention period of each of the 45 reservoirs between November 2001 and January 2004. The mean values of the limnological parameters were used to ordinate the reservoirs through principal component analysis. Ordination showed a productivity gradient among reservoirs where Secchi disc depth, total phosphorus, chlorophyll- a, inorganic turbidity and organic turbidity were identified as key factors. The total fish yield of culture-based fisheries was positively correlated to the scores of the first principal component axis. This study reveals that it is possible to classify non-perennial reservoirs in Sri Lanka based on the above limnological parameters in order to develop culture-based fisheries and that they could be applicable in comparable water bodies elsewhere in the tropics. [source]


    Seasonal and habitat differences affect the impact of food and predation on herbivores: a comparison between gaps and understory of a tropical forest

    OIKOS, Issue 1 2007
    Lora A. Richards
    Herbivore populations are influenced by a combination of food availability and predator pressure, the relative contribution of which is hypothesized to vary across a productivity gradient. In tropical forests, treefall gaps are pockets of high productivity in the otherwise less productive forest understory. Thus, we hypothesize that higher light availability in gaps will increase plant resources, thereby decreasing resource limitation of herbivores relative to the understory. As a result, predators should regulate herbivore populations in gaps, whereas food should limit herbivores in the understory. We quantified potential food availability and compared arthropod herbivore and predator densities in large forest light gaps and in the intact understory in Panama. Plants, young leaves, herbivores and predators were significantly more abundant per ground area in gaps than in the understory. This pattern was similar when we focused on seven gap specialist plant species and 15 shade-tolerant species growing in gaps and understory. Consistent with the hypothesis, herbivory rates were higher in gaps than the understory. Per capita predation rates on artificial caterpillars indicated higher predation pressure in gaps in both the dry and late wet seasons. These diverse lines of evidence all suggest that herbivores experience higher predator pressure in gaps and more food limitation in the understory. [source]


    Flood disturbance, algal productivity, and interannual variation in food chain length

    OIKOS, Issue 1 2000
    Jane C. Marks
    The length of a river food chain changed from year to year, shifting with the hydrologic regime. During drought years, grazers suppressed algae across a nutrient gradient, while predators were functionally unimportant. Following flood disturbance, predators suppressed grazers, releasing algae. These results suggest that hydrologic regime, rather than productivity, determines the functional length of this river food chain. Within years, algae and grazer biomass responded to an experimental productivity gradient in patterns predicted by simple trophic models that assume efficient energy transfer. Understanding differences among species within trophic levels, however, was crucial in delineating the controlling interactions. [source]


    Fertilization effects on species density and primary productivity in herbaceous plant communities

    OIKOS, Issue 3 2000
    Laura Gough
    Fertilization experiments in plant communities are often interpreted in the context of a hump-shaped relationship between species richness and productivity. We analyze results of fertilization experiments from seven terrestrial plant communities representing a productivity gradient (arctic and alpine tundra, two old-field habitats, desert, short- and tall-grass prairie) to determine if the response of species richness to experimentally increased productivity is consistent with the hump-shaped curve. In this analysis, we compared ratios of the mean response in nitrogen-fertilized plots to the mean in control plots for aboveground net primary productivity (ANPP) and species density (D; number of species per plot of fixed unit area). In general, ANPP increased and plant species density decreased following nitrogen addition, although considerable variation characterized the magnitude of response. We also analyzed a subset of the data limited to the longest running studies at each site (,4 yr), and found that adding 9 to 13 g N m,2 yr,1 (the consistent amount used at all sites) increased ANPP in all communities by approximately 50% over control levels and reduced species density by approximately 30%. The magnitude of response of ANPP and species density to fertilization was independent of initial community productivity. There was as much variation in the magnitude of response among communities within sites as among sites, suggesting community-specific mechanisms of response. Based on these results, we argue that even long-term fertilization experiments are not good predictors of the relationship between species richness and productivity because they are relatively small-scale perturbations whereas the pattern of species richness over natural productivity gradients is influenced by long-term ecological and evolutionary processes. [source]


    Bryozoan populations reflect nutrient enrichment and productivity gradients in rivers

    FRESHWATER BIOLOGY, Issue 11 2009
    HANNA HARTIKAINEN
    Summary 1. The hypothesis that nutrient enrichment will affect bryozoan abundance was tested using two complementary investigations; a field-based method determining bryozoan abundance in 20 rivers of different nutrient concentrations by deploying statoblast (dormant propagule) traps and an experimental laboratory microcosm study measuring bryozoan growth and mortality. These two methods confirmed independently that increased nutrient concentrations in water promote increases in the biomass of freshwater bryozoans. 2. Statoblasts of the genus Plumatella were recorded in all rivers, regardless of nutrient concentrations, demonstrating that freshwater bryozoans are widespread. Concentrations of Plumatella statoblasts were high in rivers with high nutrient concentrations relative to those with low to moderate nutrient concentrations. Regression analyses indicated that phosphorus concentrations, in particular, significantly influenced statoblast concentrations. 3. Concentrations of Lophopus crystallinus statoblasts were also higher in sites characterised by high nutrient concentrations. Logistic regression analysis revealed that the presence of L. crystallinus statoblasts was significantly associated with decreasing altitude and increasing phosphorus concentrations. This apparently rare species was found in nine rivers (out of 20), seven of which were new sites for L. crystallinus. 4. Growth rates of Fredericella sultana in laboratory microcosms increased with increasing nutrient concentration and high mortality rates were associated with low nutrient concentrations. 5. Our results indicate that bryozoans respond to increasing nutrient concentrations by increased growth, resulting in higher biomasses in enriched waters. We also found that an important component of bryozoan diets can derive from food items lacking chlorophyll a. Finally, bryozoans may be used as independent proxies for inferring trophic conditions, a feature that may be especially valuable in reconstructing historical environments by assessing the abundance of statoblasts in sediment cores. [source]


    Red in tooth and claw: how top predators shape terrestrial ecosystems

    JOURNAL OF ANIMAL ECOLOGY, Issue 4 2010
    Christopher N. Johnson
    Elmhagen, B., Ludwig, G., Rushton, S.P., Helle, P. & Linden, H. (2010) Top predators, mesopredators and their prey: interference ecosystems along bioclimatic productivity gradients. Journal of Animal Ecology79, 785,794. Top predators are increasingly recognized as important regulators of ecosystem structure. Elmhagen et al. in this issue show how a recolonizing population of lynx in Finland is in the process of imposing control of the abundance of a mesopredator, the red fox and relaxing predation pressure on a prey species. Their study shows how ecological restoration programs could use the power of top predators to limit mesopredator populations and control total predation pressure on prey species. [source]


    Measuring the components of competition along productivity gradients

    JOURNAL OF ECOLOGY, Issue 2 2007
    MARK V. WILSON
    Summary 1Controversy surrounds the measurement of competition intensity. Moreover, when biomass varies systematically along productivity and other environmental gradients, common indices of competitive outcome mask important ecological interactions. 2This study presents two indices derived from how neighbours interact with target plants. The first, relative crowding, increases directly with the abundance of neighbours present and decreases inversely with the potential size and vigour of the target plant itself. The second, interaction strength, is the integral of suppression of the target by neighbours over the range of neighbour abundance. Relative crowding and interaction strength are derived independently, but when multiplied produce the commonly used relative competitive index, showing the biological underpinnings of the relative competition index in terms of crowding and strength of interaction. Since the new indices of relative crowding and interaction strength explicitly account for the amount of neighbour biomass, they serve as a valid method to track the effects of changing habitat conditions on the components of competition. 3The new indices are applied to three published data sets. In each case, relative crowding increased with standing crop. In one case competition was reported as unchanged along a productivity gradient, whereas the new indices show that relative crowding and interaction strength both had significant patterns, but their effects were counteracting. These results do not fit current theories of competition. Further empirical studies are needed to see if competition theory needs revision. 4Separating the mechanisms of competition into relative crowding and strength of interaction reveals previously hidden patterns that help bring to light underlying processes of competition along productivity gradients. [source]


    Dispersal limitation may result in the unimodal productivity-diversity relationship: a new explanation for a general pattern

    JOURNAL OF ECOLOGY, Issue 1 2007
    MEELIS PÄRTEL
    Summary 1Variation in diversity with habitat productivity has long been a central ecological topic. Plant diversity is mostly highest at intermediate productivity, exhibiting the unimodal (so-called ,hump-back') relationship. This relationship has been explained by both evolutionary and ecological processes, but the potential role of dispersal limitation has not been considered. 2We used European flora data to show that dispersal limitation may contribute to the unimodal productivity-diversity relationship. Species were characterized by their habitat productivity preference and dispersal probability (determined by the number of seeds and the presence of a dispersal syndrome). We calculated average relative dispersal probabilities for species assemblages occurring preferentially in different habitat productivity levels. 3At low productivity levels, species without dispersal syndromes predominate (R2 = 0.89), but at high productivity levels, species with a low number of seeds are common (R2 = 0.89). The total relative dispersal probability, combining both the dispersal probabilities attributable to the number of seeds and to the presence of dispersal syndrome, had a unimodal relationship with habitat productivity (R2 = 0.86). Thus, the unimodal productivity-diversity relationship may arise due to the minimal dispersal limitation of local richness in conditions of moderately low productivity. At very low productivity, the lack of dispersal syndromes may limit dispersal. At high productivity, the low number of seeds may limit dispersal. 4Consequently, in conditions where species pool size and biotic interactions do not vary along productivity gradients, the variation in dispersal probabilities with productivity alone can produce unimodal relationships between diversity and productivity. Thus, dispersal limitation may contribute to the observed diversity pattern and ecosystem functioning to a greater extent than usually assumed. [source]


    Changes in plant interactions along a gradient of environmental stress

    OIKOS, Issue 1 2001
    Francisco I. Pugnaire
    A combination of competition and facilitation effects operating simultaneously among plant species appears to be the rule in nature, where these effects change along productivity gradients often in a non-proportional manner. We investigated changes in competition and facilitation between a leguminous shrub, Retama sphaerocarpa, and its associate understorey species along an environmental gradient in semi-arid southeast Spain. Our results show a change in the net balance of the interaction between the shrub and several of its associated species, from clearly positive in the water-stressed, infertile environment to neutral or even negative in the more fertile habitat. There was a weakening of facilitation along the fertility gradient as a consequence of improved abiotic conditions. Competition was the most intense for below-ground resources in the less fertile environment while total competition tended to increase towards the more productive end of the gradient. Changes in the balance of the interaction between and among different plant species along the gradient of stress were caused by a decline in facilitation rather than by a change in competition. As both competition intensity and facilitation change along gradients of resource availability, plant interactions are best viewed as dynamic relationships, the outcome of which depends on abiotic conditions. [source]


    Fertilization effects on species density and primary productivity in herbaceous plant communities

    OIKOS, Issue 3 2000
    Laura Gough
    Fertilization experiments in plant communities are often interpreted in the context of a hump-shaped relationship between species richness and productivity. We analyze results of fertilization experiments from seven terrestrial plant communities representing a productivity gradient (arctic and alpine tundra, two old-field habitats, desert, short- and tall-grass prairie) to determine if the response of species richness to experimentally increased productivity is consistent with the hump-shaped curve. In this analysis, we compared ratios of the mean response in nitrogen-fertilized plots to the mean in control plots for aboveground net primary productivity (ANPP) and species density (D; number of species per plot of fixed unit area). In general, ANPP increased and plant species density decreased following nitrogen addition, although considerable variation characterized the magnitude of response. We also analyzed a subset of the data limited to the longest running studies at each site (,4 yr), and found that adding 9 to 13 g N m,2 yr,1 (the consistent amount used at all sites) increased ANPP in all communities by approximately 50% over control levels and reduced species density by approximately 30%. The magnitude of response of ANPP and species density to fertilization was independent of initial community productivity. There was as much variation in the magnitude of response among communities within sites as among sites, suggesting community-specific mechanisms of response. Based on these results, we argue that even long-term fertilization experiments are not good predictors of the relationship between species richness and productivity because they are relatively small-scale perturbations whereas the pattern of species richness over natural productivity gradients is influenced by long-term ecological and evolutionary processes. [source]


    Interannual changes in folivory and bird insectivory along a natural productivity gradient in northern Patagonian forests

    ECOGRAPHY, Issue 1 2004
    C. Noemi Mazía
    Trophic regulation models suggest that the magnitude of herbivory and predation (top-down forces) should vary predictably with habitat productivity. Theory also indicates that temporal abiotic variation and within-trophic level heterogeneity both affect trophic dynamics, but few studies addressed how these factors interact over broad-scale environmental gradients. Here we document herbivory from leaf-feeding insects along a natural rainfall/productivity gradient in Nothofagus pumilio forests of northern Patagonia, Argentina, and evaluate the impact of insectivorous birds on foliar damage experienced by tree saplings at each end of the gradient. The study ran over three years (1997,2000) comprising a severe drought (1998,1999), which allowed us to test how climatic events alter top-down forces. Foliar damage tended to increase towards the xeric, least productive forests. However, we found a predictable change of insect guild prevalence across the forest gradient. Leaf miners accounted for the greater damage recorded in xeric sites, whereas leaf chewers dominated in the more humid and productive forests. Interannual folivory patterns depended strongly on the feeding guild and forest site. Whereas leaf-miner damage decreased during the drought in xeric sites, chewer damage increased after the drought in the wettest site. Excluding birds did not affect leaf damage from miners, but generally increased chewer herbivory on hydric and xeric forest saplings. Indirect effects elicited by bird exclusion became most significant after the drought, when total folivory levels were higher. Thus, interannual abiotic heterogeneity markedly influenced the amount of folivory and strength of top-down control observed across the forest gradient. Moreover, our results suggest that spatial turnovers between major feeding guilds may need be considered to predict the dynamics of insect herbivory along environmental gradients. [source]