Production Worldwide (production + worldwide)

Distribution by Scientific Domains


Selected Abstracts


Treatment development for systemic Tetrahymena sp. infection in guppies, Poecilia reticulata Peters

JOURNAL OF FISH DISEASES, Issue 6 2010
M Pimenta Leibowitz
Abstract Antibacterial and antiparasitic agents and a cysteine protease inhibitor (E-64) were tested against Tetrahymena infection, a serious problem in guppy production worldwide. Chemicals were tested in vitro by a colorimetric assay for Tetrahymena survival. The most effective were niclosamide, albendazole and chloroquine, with 23%, 35% and 60% survival, respectively, following 2-h exposure to 100 ppm. Longer incubation periods resulted in greater reductions in survival. Niclosamide was further studied in vivo at different dosages, administered orally to Tetrahymena -infected guppies. Mortality rates were significantly lower in all treatment groups; in trial I, 30% and 33% mortality in 5 and 40 mg kg,1 niclosamide-fed fish vs. 59% mortality in controls; in trial II, 35%, 13% and 10% in 50, 100 and 200 mg kg,1 niclosamide-fed fish vs. 64% in controls. The effect of the cysteine protease inhibitor E64 was tested in tissue culture, by measuring histolytic activity of the parasite (Tet-NI) on a guppy-fin cell line, based on cell depletion. Tet-NI feeding activity was significantly reduced following pretreatment with E-64 relative to non-treated Tet-NI. E-64-pretreated Tet-NI was injected i.p. into guppies: recorded mortality rates were significantly lower (35%) than that in non-treated Tet-NI (60%), suggesting inhibition of the parasite's cysteine protease as a possible therapeutic approach. [source]


Molecular Characterization of the 3,-Terminal Region of Turnip mosaic virus Isolates from Eastern China

JOURNAL OF PHYTOPATHOLOGY, Issue 6 2007
Y.-P. Tian
Abstract Turnip mosaic virus (TuMV; genus Potyvirus, family Potyviridae) causes great losses to cruciferous crop production worldwide. The 3,-terminal genomic sequences of eight TuMV isolates from eastern China were compared with those of 74 other Chinese TuMV isolates of known host origin in the GenBank and isolated during the past 25 years. The reported sequences of the eight TuMV isolates are 1125 or 1126-nucleotides (nt) long excluding the poly(A) tail. They all contain one partial open reading frame of 912 nt, encoding 304 amino acids, followed by a stop codon and a non-translated region of 209,210 nt. Results of phylogenetic analyses showed that Chinese TuMV isolates clustered into three groups: basal-BR, Asian-BR and world-B. The ratios of non-synonymous and synonymous substitutions and results of amino acid alignment provided evidence for purifying or negative selection in TuMV populations of China. [source]


Poly(vinyl chloride) on the way from the 19th century to the 21st century

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 3 2004
D. Braun
Abstract Despite all the technical and economic problems and the public discussions on the environmental dangers and hazards of chlorine chemistry, poly(vinyl chloride) (PVC) is the second most produced plastic (with a worldwide capacity of about 31 million tons), placing after polyolefins and before styrene polymers. Presently, PVC production worldwide is growing at a rate of more than 4% per year. The application of PVC was first described in a patent in 1913, but only after 1930 did a sustained interest in PVC arise in several industrial laboratories. The most remarkable milestones in PVC history and their importance to the development of macromolecular chemistry are briefly described, and some present PVC research and industrial applications, with respect to polymerization, stabilization, bulk property modification, and chemical and material recycling of PVC waste, are discussed. Some actual selected topics include the emulsion polymerization of vinyl chloride with polymeric surfactants and controlled free-radical polymerization with nitroxyls, whereas ionic and metal organic initiators have not found any technical applications. Chemical reactions offer many possibilities for the modification of PVC, but they have been not used on a technical scale yet. Much work has been done on stabilization with nontoxic or metal-free systems. The bulk properties of PVC can be influenced by impact modification through the addition of graft copolymers or by blending with other polymers. Also presented are some problems and recent developments in PVC recycling. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 578,586, 2004 [source]


Identification of RAPD markers linked to recessive genes conferring siliqua shatter resistance in Brassica rapa

PLANT BREEDING, Issue 6 2003
O. Mongkolporn
Abstract Shattering of siliquae causes significant seed loss in canola (Brassica napus) production worldwide. There is little genetic variation for resistance to shatter in canola and, hence, the trait has been studied in B. rapa. Previous studies have shown two randomly segregating recessive genes to be responsible for shatter resistance. Three random amplified polymorphic DNA markers were identified as being linked to shatter resistance using bulked segregant analysis in a F3B. rapa population. The population was derived from a cross between a shatter-susceptible Canadian cultivar and a shatter-resistant Indian line. Of the three markers, RAC-3900 and RX-71000 were linked to recessive sh1 and sh2 alleles, and SAC-201300 was linked to both dominant Sh1 and Sh2 alleles. The common marker for the dominant wild-type allele for the two loci was explained to have resulted from duplication of an original locus and the associated markers through chromosome duplication and rearrangements in the process of evolution of the modern B. rapa from its progenitor that had a lower number of chromosomes. Segregation data from double heterozygous F3 families, although limited, indicated the markers were not linked to each other and provided further evidence for the duplication hypothesis. [source]


Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots

PLANT CELL & ENVIRONMENT, Issue 7 2006
D. L. JONES
ABSTRACT Aluminium (Al) toxicity associated with acid soils represents one of the biggest limitations to crop production worldwide. Although Al specifically inhibits the elongation of root cells, the exact mechanism by which this growth reduction occurs remains controversial. The aim of this study was to investigate the spatial and temporal dynamics of Al migration into roots of maize (Zea mays L.) and the production of the stress response compound callose. Using the Al-specific fluorescent probe morin, we demonstrate the gradual penetration of Al into roots. Al readily accumulates in the root's epidermal and outer cortical cell layers but does not readily penetrate into the inner cortex. After prolonged exposure times (12,24 h), Al had entered all areas of the root apex. The spatial and temporal accumulation of Al within the root is similarly matched by the production of the cell wall polymer callose, which is also highly localized to the epidermis and outer cortical region. Exposure to Al induced the rapid production of reactive oxygen species and induced a significant rigidification of the cell wall. Our results suggest that Al-induced root inhibition in maize occurs by rigidification of the epidermal layers. [source]


Ovary colonization by Claviceps africana is related to ergot resistance in male-sterile sorghum lines

PLANT PATHOLOGY, Issue 5 2003
B. Komolong
Ergot, caused by Claviceps africana, has emerged as a serious threat to sorghum hybrid seed production worldwide. In the absence of gene-for-gene-based qualitative resistance in commercial cultivars, varieties with high pollen production that can escape ergot infection are preferred. Recent demonstration of differences in ergot susceptibility among male-sterile lines has indicated the presence of partial resistance. Using chitin-specific fluorescin-isothiocyanate-conjugated wheat germ agglutin and callose-specific aniline blue, this study investigated the process of sorghum ovary colonization by C. africana. Conidia germinated within 24 h after inoculation (a.i.); the pathogen was established in the ovary by 79 h a.i., and at least half of the ovary was converted into sphacelial tissue by 120 h a.i. Changes in fungal cell wall chitin content and strategic callose deposition in the host tissue were associated with penetration and invasion of the ovary. The rate of ovary colonization differed in three male-sterile lines that also differed in ergot susceptibility. This work demonstrates a possible histological basis for partial resistance in male-sterile sorghum lines that could lay the foundation for variety improvement through further breeding and selection. [source]


Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: a review

AQUACULTURE RESEARCH, Issue 4 2010
Einar Ringų
Abstract Intensive fish production worldwide has increased the risk of infectious diseases. However, before any infection can be established, pathogens must penetrate the primary barrier. In fish, the three major routes of infection are the skin, gills and gastrointestinal (GI) tract. The GI tract is essentially a muscular tube lined by a mucous membrane of columnar epithelial cells that exhibit a regional variation in structure and function. In the last two decades, our understanding of the endocytosis and translocation of bacteria across this mucosa, and the sorts of cell damage caused by pathogenic bacteria, has increased. Electron microscopy has made a valuable contribution to this knowledge. In the fish-farming industry, severe economic losses are caused by furunculosis (agent, Aeromonas salmonicida spp. salmonicida) and vibriosis [agent, Vibrio (Listonella) anguillarum]. This article provides an overview of the GI tract of fish from an electron microscopical perspective focusing on cellular damage (specific attack on tight junctions and desmosomes) caused by pathogenic bacteria, and interactions between the ,good' intestinal bacteria [e.g. lactic acid bacteria (LAB)] and pathogens. Using different in vitro methods, several studies have demonstrated that co-incubation of Atlantic salmon (Salmo salar L.) foregut (proximal intestine) with LAB and pathogens can have beneficial effects, the cell damage caused by the pathogens being prevented, to some extent, by the LAB. However, there is uncertainty over whether or not similar effects are observed in other species such as Atlantic cod (Gadus morhua L.). When discussing cellular damage in the GI tract of fish caused by pathogenic bacteria, several important questions arise including: (1) Do different pathogenic bacteria use different mechanisms to infect the gut? (2) Does the gradual development of the GI tract from larva to adult affect infection? (3) Are there different infection patterns between different fish species? The present article addresses these and other questions. [source]