Home About us Contact | |||
Production Mechanisms (production + mechanism)
Selected AbstractsAppropriate vertical discretization of Richards' equation for two-dimensional watershed-scale modellingHYDROLOGICAL PROCESSES, Issue 1 2004Charles W. Downer Abstract A number of watershed-scale hydrological models include Richards' equation (RE) solutions, but the literature is sparse on information as to the appropriate application of RE at the watershed scale. In most published applications of RE in distributed watershed-scale hydrological modelling, coarse vertical resolutions are used to decrease the computational burden. Compared to point- or field-scale studies, application at the watershed scale is complicated by diverse runoff production mechanisms, groundwater effects on runoff production, runon phenomena and heterogeneous watershed characteristics. An essential element of the numerical solution of RE is that the solution converges as the spatial resolution increases. Spatial convergence studies can be used to identify the proper resolution that accurately describes the solution with maximum computational efficiency, when using physically realistic parameter values. In this study, spatial convergence studies are conducted using the two-dimensional, distributed-parameter, gridded surface subsurface hydrological analysis (GSSHA) model, which solves RE to simulate vadose zone fluxes. Tests to determine if the required discretization is strongly a function of dominant runoff production mechanism are conducted using data from two very different watersheds, the Hortonian Goodwin Creek Experimental Watershed and the non-Hortonian Muddy Brook watershed. Total infiltration, stream flow and evapotranspiration for the entire simulation period are used to compute comparison statistics. The influences of upper and lower boundary conditions on the solution accuracy are also explored. Results indicate that to simulate hydrological fluxes accurately at both watersheds small vertical cell sizes, of the order of 1 cm, are required near the soil surface, but not throughout the soil column. The appropriate choice of approximations for calculating the near soil-surface unsaturated hydraulic conductivity can yield modest increases in the required cell size. Results for both watersheds are quite similar, even though the soils and runoff production mechanisms differ greatly between the two catchments. Copyright © 2003 John Wiley & Sons, Ltd. [source] Long-Range-Ordered, Molecular-Induced Nanofaceting,ADVANCED MATERIALS, Issue 21 2006M. Fanetti Ordered molecular nanostructured films (see figure) are obtained by exploiting the molecular-induced substrate faceting transition, following a very simple protocol. The obtained nanostructures show univocal alignment and quite good homogeneity, and the pattern periodicity can be controlled in the process. The stepped structure of the vicinal metallic substrate has a key role in the film production mechanism. [source] Appropriate vertical discretization of Richards' equation for two-dimensional watershed-scale modellingHYDROLOGICAL PROCESSES, Issue 1 2004Charles W. Downer Abstract A number of watershed-scale hydrological models include Richards' equation (RE) solutions, but the literature is sparse on information as to the appropriate application of RE at the watershed scale. In most published applications of RE in distributed watershed-scale hydrological modelling, coarse vertical resolutions are used to decrease the computational burden. Compared to point- or field-scale studies, application at the watershed scale is complicated by diverse runoff production mechanisms, groundwater effects on runoff production, runon phenomena and heterogeneous watershed characteristics. An essential element of the numerical solution of RE is that the solution converges as the spatial resolution increases. Spatial convergence studies can be used to identify the proper resolution that accurately describes the solution with maximum computational efficiency, when using physically realistic parameter values. In this study, spatial convergence studies are conducted using the two-dimensional, distributed-parameter, gridded surface subsurface hydrological analysis (GSSHA) model, which solves RE to simulate vadose zone fluxes. Tests to determine if the required discretization is strongly a function of dominant runoff production mechanism are conducted using data from two very different watersheds, the Hortonian Goodwin Creek Experimental Watershed and the non-Hortonian Muddy Brook watershed. Total infiltration, stream flow and evapotranspiration for the entire simulation period are used to compute comparison statistics. The influences of upper and lower boundary conditions on the solution accuracy are also explored. Results indicate that to simulate hydrological fluxes accurately at both watersheds small vertical cell sizes, of the order of 1 cm, are required near the soil surface, but not throughout the soil column. The appropriate choice of approximations for calculating the near soil-surface unsaturated hydraulic conductivity can yield modest increases in the required cell size. Results for both watersheds are quite similar, even though the soils and runoff production mechanisms differ greatly between the two catchments. Copyright © 2003 John Wiley & Sons, Ltd. [source] Use of ion-energy distributions for the identification of species and production mechanisms in low-pressure DC dischargesJOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 8 2008Víctor J. Herrero [source] The Cross-linguistic Study of Sentence ProductionLINGUISTICS & LANGUAGE COMPASS (ELECTRONIC), Issue 4 2009T. Florian Jaeger The mechanisms underlying language production are often assumed to be universal, and hence not contingent on a speaker's language. This assumption is problematic for at least two reasons. Given the typological diversity of the world's languages, only a small subset of languages has actually been studied psycholinguistically. And, in some cases, these investigations have returned results that at least superficially raise doubt about the assumption of universal production mechanisms. The goal of this paper is to illustrate the need for more psycholinguistic work on a typologically more diverse set of languages. We summarize cross-linguistic work on sentence production (specifically: grammatical encoding), focusing on examples where such work has improved our theoretical understanding beyond what studies on English alone could have achieved. But cross-linguistic research has much to offer beyond the testing of existing hypotheses: it can guide the development of theories by revealing the full extent of the human ability to produce language structures. We discuss the potential for interdisciplinary collaborations, and close with a remark on the impact of language endangerment on psycholinguistic research on understudied languages. [source] Constraints on decaying dark matter from XMM,Newton observations of M31MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2008Alexey Boyarsky ABSTRACT We derive constraints on the parameters of the radiatively decaying dark matter (DM) particle, using the XMM,Newton EPIC spectra of the Andromeda galaxy (M31). Using the observations of the outer (5,13 arcmin) parts of M31, we improve the existing constraints. For the case of sterile neutrino DM, combining our constraints with the latest computation of abundances of sterile neutrinos in the Dodelson,Widrow (DW) scenario, we obtain the lower mass limit ms < 4 keV, which is stronger than the previous one ms < 6 keV, obtained recently by Asaka, Laine & Shaposhnikov. Comparing this limit with the most recent results on Lyman , forest analysis of Viel et al. (ms > 5.6 keV), we argue that the scenario in which all the DM is produced via the DW mechanism is ruled out. We discuss, however, other production mechanisms and note that the sterile neutrino remains a viable candidate for DM, either warm or cold. [source] Stable isotope natural abundance of nitrous oxide emitted from Antarctic tundra soils: effects of sea animal excrement depositionsRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 22 2008Renbin Zhu Nitrous oxide (N2O), a greenhouse gas, is mainly emitted from soils during the nitrification and denitrification processes. N2O stable isotope investigations can help to characterize the N2O sources and N2O production mechanisms. N2O isotope measurements have been conducted for different types of global terrestrial ecosystems. However, no isotopic data of N2O emitted from Antarctic tundra ecosystems have been reported although the coastal ice-free tundra around Antarctic continent is the largest sea animal colony on the global scale. Here, we report for the first time stable isotope composition of N2O emitted from Antarctic sea animal colonies (including penguin, seal and skua colonies) and normal tundra soils using insitu field observations and laboratory incubations, and we have analyzed the effects of sea animal excrement depositions on stable isotope natural abundance of N2O. For all the field sites, the soil-emitted N2O was 15N- and 18O-depleted compared with N2O in local ambient air. The mean , values of the soil-emitted N2O were ,15N,=,,13.5,±,3.2, and ,18O,=,26.2,±,1.4, for the penguin colony, ,15N,=,,11.5,±,5.1, and ,18O,=,26.4,±,3.5, for the skua colony and ,15N,=,,18.9,±,0.7, and ,18O,=,28.8,±,1.3, for the seal colony. In the soil incubations, the isotopic composition of N2O was measured under N2 and under ambient air conditions. The soils incubated under the ambient air emitted very little N2O (2.93,µg,N2ON,kg,1). Under N2 conditions, much more N2O was formed (9.74,µg,N2ON,kg,1), and the mean ,15N and ,18O values of N2O were ,19.1,±,8.0, and 21.3,±,4.3,, respectively, from penguin colony soils, and ,17.0,±,4.2, and 20.6,±,3.5,, respectively, from seal colony soils. The data from in situ field observations and laboratory experiments point to denitrification as the predominant N2O source from Antarctic sea animal colonies. Copyright © 2008 John Wiley & Sons, Ltd. [source] |