Home About us Contact | |||
Product Quality Attributes (product + quality_attribute)
Selected AbstractsLinear PI control of batch exothermic reactors with temperature measurementINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 3 2006Jose Alvarez-Ramirez Abstract A wide variety of speciality materials and fine chemicals such as plastics, pharmaceutical and microelectronics components are produced in batch reactors. The nonlinear, transient and finite-time features of the batch reactors give rise to complex process and control design problems. In particular, the safe operation of exothermic reactors depends on the adequate functioning of a temperature tracking controller, and to a good extent, the same is true for the attainment of a suitable compromise between productivity and product quality attributes. While the stabilization problem of continuous exothermic chemical reactors has been recently addressed with rigorous asymptotic-stability methods, the same kind of studies have not yet been performed for the finite-time batch reactor case. In this paper, the problem of designing a temperature tracking controller for an exothermic batch reactor, with n species and m reactions, is addressed under the following premises: (i) only the reactor temperature is measured, (ii) the (typically uncertain) reaction rate and heat exchange nonlinear functions are unknown, (iii) the controller must be linear and easy to tune, and (iv) the closed-loop reactor motion must be stable in a suitable sense. The combination of industrial-oriented inventory control concepts in conjunction with singular perturbation results yields a linear controller with a combined feedforward-PI feedback structure, antireset windup scheme, and conventional-like tuning rules. The controller: (i) tracks, arbitrarily fast and close, a prescribed temperature trajectory, with admissibly deviated concentration motions, and (ii) quickly recovers the behaviour of an exact model-based nonlinear I/O linearizing controller. The proposed design is put in perspective with the geometric and IMC nonlinear control approaches. Copyright © 2005 John Wiley & Sons, Ltd. [source] IMPINGEMENT DRYING OF POTATO CHIPSJOURNAL OF FOOD PROCESS ENGINEERING, Issue 1 2002ALINE T. CAIXETA ABSTRACT The effect of superheated steam temperature (115, 130, and 145C) and convective heat transfer coefficient (100 and 160 W/m2C) on the drying rate and product quality attributes (shrinkage, density, porosity, color, texture, and nutrition loss) of potato chips was investigated. Furthermore, potato chips dried by impinging superheated steam (130 and 145C, h = 100 W/m2C) were compared to air dried (same conditions), commercial, and fried potato chips. Temperature and convective heat transfer coefficient had a significant effect on the drying rate during superheated steam impingement drying. Potato chips dried at higher drying temperature and convective heat transfer coefficient showed less shrinkage, lower bulk density, higher porosity, and darker color when compared to chips dried at lower temperatures and convective heat transfer coefficients. They were also less hard and had a lower vitamin C content. A higher rate of evaporation during the falling rate period was obtained when superheated steam drying was compared to air impingement drying. Potato chips produced using superheated steam impingement drying showed more shrinkage, higher bulk density, lower porosity, and lighter color than chips dried with air under the same temperature and with the same convective heat transfer coefficient (130, and 145C, h = 100 W/m2C). Moreover, superheated steam-dried potato chips retained more vitamin C during the drying process. [source] Multivariate data analysis on historical IPV production data for better process understanding and future improvementsBIOTECHNOLOGY & BIOENGINEERING, Issue 1 2010Yvonne E. Thomassen Abstract Historical manufacturing data can potentially harbor a wealth of information for process optimization and enhancement of efficiency and robustness. To extract useful data multivariate data analysis (MVDA) using projection methods is often applied. In this contribution, the results obtained from applying MVDA on data from inactivated polio vaccine (IPV) production runs are described. Data from over 50 batches at two different production scales (700-L and 1,500-L) were available. The explorative analysis performed on single unit operations indicated consistent manufacturing. Known outliers (e.g., rejected batches) were identified using principal component analysis (PCA). The source of operational variation was pinpointed to variation of input such as media. Other relevant process parameters were in control and, using this manufacturing data, could not be correlated to product quality attributes. The gained knowledge of the IPV production process, not only from the MVDA, but also from digitalizing the available historical data, has proven to be useful for troubleshooting, understanding limitations of available data and seeing the opportunity for improvements. Biotechnol. Bioeng. 2010;107: 96,104. © 2010 Wiley Periodicals, Inc. [source] Optimization of cultivation conditions in spin tubes for Chinese hamster ovary cells producing erythropoietin and the comparison of glycosylation patterns in different cultivation vesselsBIOTECHNOLOGY PROGRESS, Issue 3 2010Jure Strnad Abstract This article describes the optimization of cultivation factor settings, that is the shaking rate and working volume in 50 mL spin tubes for a Chinese hamster ovary cell line expressing recombinant human ,-erythropoietin, using a response D-optimal surface method. The main objectives of the research were, firstly, to determine a setting in which the product titer and product quality attributes in spin tubes are equivalent to those in 250 mL shake flasks in a seven day batch and, secondly, to find a setting in which the product titer is maximal. The model for product titer prediction as a function of shaking rate and working volume in the defined design space was successfully applied to the optimization of cultivation conditions in spin tubes for the tested cell line. Subsequently, validation experiments were carried out simultaneously in spin tubes, shake flasks and bench scale bioreactors to compare cell culture performance parameters such as growth, productivity and product quality attributes in the form of isoform profiles and glycan antennarity structures. The results of the experiments showed that similar cell culture performance and product quality could be achieved in spin tubes when compared to shake flasks. Additionally, bioreactor titers could be reproduced in spin tubes at high shaking rates and low working volumes, but with differing product quality. Cultivation at lower shaking rates in spin tubes and shake flasks produced a glycoprotein with a product quality slightly comparable to that from bioreactors, but with titers being only two thirds. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] Large scale demonstration of a process analytical technology application in bioprocessing: Use of on-line high performance liquid chromatography for making real time pooling decisions for process chromatographyBIOTECHNOLOGY PROGRESS, Issue 2 2010Anurag S. Rathore Abstract Process Analytical Technology (PAT) has been gaining a lot of momentum in the biopharmaceutical community because of the potential for continuous real time quality assurance resulting in improved operational control and compliance. In previous publications, we have demonstrated feasibility of applications involving use of high performance liquid chromatography (HPLC) and ultra performance liquid chromatography (UPLC) for real-time pooling of process chromatography column. In this article we follow a similar approach to perform lab studies and create a model for a chromatography step of a different modality (hydrophobic interaction chromatography). It is seen that the predictions of the model compare well to actual experimental data, demonstrating the usefulness of the approach across the different modes of chromatography. Also, use of online HPLC when the step is scaled up to pilot scale (a 2294 fold scale-up from a 3.4 mL column in the lab to a 7.8 L column in the pilot plant) and eventually to manufacturing scale (a 45930 fold scale-up from a 3.4 mL column in the lab to a 158 L column in the manufacturing plant) is examined. Overall, the results confirm that for the application under consideration, online-HPLC offers a feasible approach for analysis that can facilitate real-time decisions for column pooling based on product quality attributes. The observations demonstrate that the proposed analytical scheme allows us to meet two of the key goals that have been outlined for PAT, i.e., "variability is managed by the process" and "product quality attributes can be accurately and reliably predicted over the design space established for materials used, process parameters, manufacturing, environmental, and other conditions". The application presented here can be extended to other modes of process chromatography and/or HPLC analysis. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 [source] Case study and application of process analytical technology (PAT) towards bioprocessing: Use of tryptophan fluorescence as at-line tool for making pooling decisions for process chromatographyBIOTECHNOLOGY PROGRESS, Issue 5 2009Anurag S. Rathore Abstract Process analytical technology (PAT) has been gaining momentum in the biopharmaceutical community due to the potential for continuous real time quality assurance resulting in improved operational control and compliance. Two imperatives for implementing any PAT tool are that "variability is managed by the process" and "product quality attributes can be accurately and reliably predicted over the design space established for materials used, process parameters, manufacturing, environmental, and other conditions." Recently, we have been examining the feasibility of applying different analytical tools to bioprocessing unit operations. We have previously demonstarted that commercially available online-high performance liquid chromatography and ultra performance liquid chromatography systems can be used for analysis that can facilitate real-time decisions for column pooling based on product quality attributes (Rathore et al., 2008a,b). In this article, we review an at-line tool that can be used for pooling of process chromatography columns. We have demonstrated that our tryptophan fluorescence method offers a feasible approach and meets the requirements of a PAT application. It is significantly faster than the alternative of fractionation, offline analysis followed by pooling. Although the method as presented here is not an online method, this technique may offer better resolution for certain applications and may be a more optimal approach as it is very conducive to implementation in a manufacturing environment. This technique is also amenable to be used as an online tool via front face fluorescence measurements done concurrently with product concentration determination by UV. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] |