Home About us Contact | |||
Processing Characteristics (processing + characteristic)
Selected AbstractsProcessing characteristics and mechanical properties of metallocene catalyzed linear low-density polyethylene foams for rotational moldingPOLYMER ENGINEERING & SCIENCE, Issue 4 2004E. Archer The object of this work is to assess the suitability of metallocene catalyzed linear low-density polyethylenes for the rotational molding of foams and to link the material and processing conditions to cell morphology and part mechanical properties (flexural and compressive strength). Through adjustments to molding conditions, the significant processing and physical material parameters that optimize metallocene catalyzed linear low-density polyethylene foam structure have been identified. The results obtained from an equivalent conventional grade of Ziegler-Natta catalyzed linear low-density polyethylene are used as a basis for comparison. The key findings of this study are that metallocene catalyzed LLDPE can be used in rotational foam molding to produce a foam that will perform as well as a Ziegler-Natta catalyzed foam and that foam density is by far the most influential factor over mechanical properties of foam. Polym. Eng. Sci. 44:638,647, 2004. © 2004 Society of Plastics Engineers. [source] Neurons with distinctive firing patterns, morphology and distribution in laminae V,VII of the neonatal rat lumbar spinal cordEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2003Péter Szûcs Abstract It is generally accepted that neurons in the ventral spinal grey matter, a substantial proportion of which can be regarded as constituents of the spinal motor apparatus, receive and integrate synaptic inputs arising from various peripheral, spinal and supraspinal sources. Thus, a profound knowledge concerning the integrative properties of interneurons in the spinal ventral grey matter appears to be essential for a fair understanding of operational principles of spinal motor neural assemblies. Using the whole cell patch clamp configuration in a correlative physiological and morphological experimental approach, here we demonstrate that the intrinsic membrane properties of neurons vary widely in laminae V,VII of the ventral grey matter of the neonatal rat lumbar spinal cord. Based on their firing patterns in response to depolarizing current steps, we have classified the recorded neurons into four categories: ,phasic', ,repetitive', ,single' and ,slow'. Neurons with firing properties characteristic of the ,phasic', ,repetitive' and ,single' cells have previously been reported also in the superficial and deep spinal dorsal horn, but this is the first account in the literature in which ,slow' neurons have been recovered and described in the spinal cord. The physiological heterogeneity in conjunction with the morphological correlation and distribution of neurons argues that different components of motor neural assemblies in the spinal ventral grey matter possess different signal processing characteristics. [source] Ultra Whey 99: a whey protein isolate case studyINTERNATIONAL JOURNAL OF DAIRY TECHNOLOGY, Issue 4 2001J R Neville A case history of the manufacture and use of whey protein isolate is presented and particular attention is paid to the nutritional and processing characteristics of Ultra Whey 99, a whey protein isolate manufactured by Volac International Ltd. The growth of the nutritional bar market in the USA is used to demonstrate the increasing demand for specialist products such as whey protein. [source] OPTIMAL COAGULANT CONCENTRATION, SOYMILK AND TOFU QUALITY AS AFFECTED BY A SHORT-TERM MODEL STORAGE OF PROTO SOYBEANSJOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 1 2008ZHI-SHENG LIU ABSTRACT Soybeans were adjusted to water activities (Aw) from 0.60 to 0.81, and stored at 30C for up to 3 months. At 1-month intervals, soybeans were retrieved from the storage and processed into 10.5 Brix soymilk. The optimal coagulant concentration (OCC) for making filled tofu was determined using a titration method. Other soymilk characteristics, including total solids, protein, 11 S/7 S protein ratio, phytate, titratable acidity, pH and color, were also determined. Filled tofu was prepared from each stored soybeans with the respective OCC using MgCl2 or CaCl2. With increasing Aw or storage time, the OCC decreased significantly. The decrease in OCC was significantly correlated to the difference in soymilk titratable acidity and the change in soymilk pH. Soybean storage time slightly decreased the breaking stress and apparent Young's modulus of the filled tofu, particularly the MgCl2 coagulated tofu. With increasing Aw or storage time, the lightness and yellowness intensity of both soymilk and tofu decreased, whereas their redness intensity increased. PRACTICAL APPLICATIONS Tofu and soymilk are popular soybean foods. Using optimal concentration of coagulant in soymilk is the most critical step among many steps of unit operations during tofu manufacturing for achieving high quality tofu. Improper use of coagulant can lead to product failure and therefore significant economic loss for the manufacturers. The optimal coagulant concentration varies not only with processing condition, but also with soybean materials which are affected by variety and storage conditions. Acidity, pH and food color are important quality factors to influence taste and consumer acceptance. Soybeans are subject to storage and transportation before processing. Storage length and environmental humidity are two of important factors which affect soybean quality and processing property. This study provides very important information that is useful for the soymilk and tofu manufacturers in controlling product quality through the understanding of the chemistry and processing characteristics of stored soybeans. Manufacturers can utilize the methods presented in this article to calculate the optimal coagulant concentrations to avoid product failure and to produce the best quality products. [source] Heterocyclic polyimides containing siloxane groups in the main chainPOLYMER INTERNATIONAL, Issue 9 2009Mariana-Dana Damaceanu Abstract BACKGROUND: Among the polymers widely studied for applications in advanced techniques, aromatic polyimides have received considerable attention due to their outstanding thermal stability associated with good electrical and mechanical properties. However, these polymers are usually difficult to process, being insoluble and without a glass transition. To improve the processing characteristics of polyimides, modification of their structure is often achieved by the introduction of flexible linkages in the macromolecular chain or various substituents on the aromatic rings. RESULTS: A series of polyimides and intermediate polyamidic acids were synthesized from aromatic oxadiazole-diamines and a dianhydride containing a siloxane bridge (R2SiOSiR2). These polymers exhibit good solubility in certain organic solvents and can be cast into thin and very thin films from their solutions. They exhibit high thermal stability with decomposition being above 440 °C and relatively low glass transition temperatures in the range 160,190 °C. These polymers show strong photoluminescence in the blue spectral region. CONCLUSION: The introduction of oxadiazole rings together with siloxane groups into the chains of aromatic polyimides gives highly thermostable polymers with remarkable solubility and film-forming ability and that emit blue light, being attractive for applications in micro- and nanoelectronics and other related advanced fields. Copyright © 2009 Society of Chemical Industry [source] Preparation and properties of a novel high-performance resin system with low injection temperature for resin transfer mouldingPOLYMER INTERNATIONAL, Issue 9 2004Dr Aijuan Gu Abstract A novel high-performance resin system with low injection temperature for resin transfer moulding, M4506, was developed, which was made of 4,4,-bismaleimidodiphenylmethane, o,o,-diallyl bisphenol A, o,o,-diallyl bisphenol A ether, and 1,1,-bis(4-cyanatophenyl)ethane. The processing characteristics, thermal and mechanical properties of the system were studied, and the effect of differing stoichiometries of each component on the processing and performance parameters was discussed. Investigations show that the processing properties of the M4506 system are greatly dependent on the stoichiometries of each component in the formulations, while all the three formulations developed in this paper have good processing characteristics, their suitable injection temperature are between 40 and 50 °C, depending on their respective formulation. The three formulations exhibited outstanding heat resistance (Tg = 294,300 °C) and thermal stability, good toughness and high strength, evidence that the M4506 system is a potential candidate as a high-performance RTM matrix for advance composites as well as high-performance paints with no solvents. Copyright © 2004 Society of Chemical Industry [source] |