Process Heat (process + heat)

Distribution by Scientific Domains


Selected Abstracts


Optimization of parabolic trough solar collector system

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 4 2006
Saad D. Odeh
Abstract Process heat produced by solar collectors can contribute significantly in the conservation of conventional energy resources, reducing CO2 emission, and delaying global warming. One of the major problems associated with solar process heat application is fluctuation in system temperature during unsteady state radiation conditions which may cause significant thermal and operation problems. In this paper a transient simulation model is developed for analysing the performance of industrial water heating systems using parabolic trough solar collectors. The results showed that to prevent dramatic change and instability in process heat during transient radiation periods thermal storage tank size should not be lower than 14.5 l m,2 of collector area. Small periods of radiation instability lower than 30 min do not have significant effect on system operation. During these periods when water flow rate of collector loop is doubled the time required to restore system normal operating condition increased by a ratio of 1.5. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Energy efficiency investments in Kraft pulp mills given uncertain climate policy

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 5 2007
Anders Ådahl
Abstract Energy efficiency measures in pulp mills can potentially reduce the consumption of biofuel, which can instead be exported and used elsewhere. In this paper a methodology is proposed for analysing the robustness of energy efficiency investments in Kraft pulp mills or other industrial process plants equipped with biofuelled combined heat and power units, given uncertain future climate policy. The outlook for biofuel and electricity prices is a key factor for deciding if energy efficiency measures are cost competitive. CO2 emission charges resulting from climate policy are internalized and thus included in electricity and biofuel prices. The proposed methodology includes a price-setting model for biofuel that assumes a constant price ratio between biofuel and electricity in the Nordic countries. Thirteen energy efficiency retrofit measures are analysed for an existing Swedish Kraft pulp mill. Special attention is paid to heat-integrated evaporation using excess process heat. Four possible energy market development paths are considered that reflect different climate policies. Pulp mill energy efficiency investments considered are shown to be robust with respect to uncertain climate policy. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Optimization of parabolic trough solar collector system

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 4 2006
Saad D. Odeh
Abstract Process heat produced by solar collectors can contribute significantly in the conservation of conventional energy resources, reducing CO2 emission, and delaying global warming. One of the major problems associated with solar process heat application is fluctuation in system temperature during unsteady state radiation conditions which may cause significant thermal and operation problems. In this paper a transient simulation model is developed for analysing the performance of industrial water heating systems using parabolic trough solar collectors. The results showed that to prevent dramatic change and instability in process heat during transient radiation periods thermal storage tank size should not be lower than 14.5 l m,2 of collector area. Small periods of radiation instability lower than 30 min do not have significant effect on system operation. During these periods when water flow rate of collector loop is doubled the time required to restore system normal operating condition increased by a ratio of 1.5. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Integration of Solar Energy into Absorption Refrigerators and Industrial Processes

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 9 2010
E. A. Tora
Abstract Absorption refrigeration is gaining increasing attention in industrial facilities to use process heat for partially or completely driving a cooling cycle. This paper introduces a systematic approach to the design of absorption refrigeration systems for industrial processes. Three sources of energy are considered to drive absorption refrigerators: excess process heat, solar energy, and fossil fuels. To handle the dynamic nature of solar energy, hot water tanks are used for energy storage and dispatch. Thermal pinch analysis is performed to determine the amount of available excess heat and the required refrigeration duty. Next, a multiperiod optimization formulation is developed for the entire system. The procedure determines the optimal mix of energy forms (solar versus fossil) and the dynamic operation of the system. Three case studies are solved to demonstrate the effectiveness and applicability of the devised procedure. [source]


Autothermal Catalytic Partial Oxidation of Glycerol to Syngas and to Non-Equilibrium Products

CHEMSUSCHEM CHEMISTRY AND SUSTAINABILITY, ENERGY & MATERIALS, Issue 1 2009
David
Abstract Glycerol, a commodity by-product of the biodiesel industry, has value as a fuel feedstock and chemical intermediate. It is also a simple prototype of sugars and carbohydrates. Through catalytic partial oxidation (CPOx), glycerol can be converted into syngas without the addition of process heat. We explored the CPOx of glycerol using a nebulizer to mix droplets with air at room temperature for reactive flash volatilization. Introducing this mixture over a noble-metal catalyst oxidizes the glycerol at temperatures over 600,°C in 30,90,ms. Rhodium catalysts produce equilibrium selectivity to syngas, while platinum catalysts produce mainly autothermal non-equilibrium products. The addition of water to the glycerol increases the selectivity to H2 by the water gas shift reaction and reduces non-equilibrium products. However, water also quenches the reaction, resulting in a maximum in H2 production at a steam/carbon ratio of 2:3 over a Rh-Ce catalyst. Glycerol without water produces a variety of chemicals over Pt, including methylglyoxal, hydroxyacetone, acetone, acrolein, acetaldehyde, and olefins. [source]