Prostatic Epithelial Cells (prostatic + epithelial_cell)

Distribution by Scientific Domains


Selected Abstracts


Clinical and biological significance of CXCR5 expressed by prostate cancer specimens and cell lines

INTERNATIONAL JOURNAL OF CANCER, Issue 10 2009
Shailesh Singh
Abstract Chemokines and chemokine receptors have been shown to be involved in metastatic process of prostate cancer (PCa). In this study, we show primary PCa tissues and cell lines (LNCaP and PC3) express CXCR5, a specific chemokine receptor for CXCL13. Expression of CXCR5 was significantly higher (p < 0.001) in PCa cases than compared to normal match (NM) tissues. CXCR5 intensity correlated (R2 = 0.97) with Gleason score. While prostate tumor tissues with Gleason scores , 7, displayed predominantly nuclear CXCR5 expression patterns, PCa specimens with Gleason scores , 6 showed predominantly membrane and cytoplasmic expression patterns that were comparable to benign prostatic hyperplasia (BPH). Similar to tissue expression, PCa cell lines expressed significantly more CXCR5 than normal prostatic epithelial cells (PrECs), and CXCR5 expression was distributed among intracellular and extracellular compartments. Functional in vitro assays showed higher migratory and invasive potentials toward CXCL13, an effect that was mediated by CXCR5. In both PCa cell lines, CXCL13 treatment increased the expression of collagenase-1 or matrix metalloproteinase-1 (MMP-1), collagenase-3 (MMP-13), stromelysin-1 (MMP-3), stromelysin-2 (MMP-10) and stromelysin-3 (MMP-11). These data demonstrate the clinical and biological relevance of the CXCL13-CXCR5 pathway and its role in PCa cell invasion and migration. © 2009 UICC [source]


cGMP-enhancing- and ,1A/,1D -adrenoceptor blockade-derived inhibition of Rho-kinase by KMUP-1 provides optimal prostate relaxation and epithelial cell anti-proliferation efficacy

THE PROSTATE, Issue 13 2007
Chi-Ming Liu
Abstract Background Soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP)/protein kinase G (PKG) and Rho kinase (ROCK2) pathways are important in the regulation of prostate smooth muscle tone. This study is aimed to examine the relaxation activities of a sGC activator and PDE5A/ROCK2 inhibitor KMUP-1 in rat prostate and associated anti-proliferation activity in human prostatic epithelial cells. Methods The action characteristics of KMUP-1 were identified by isometric tension measurement, receptor binding assay, Western blotting and radioimmunoassay in rat prostate. Anti-proliferation activity of KMUP-1 in human prostatic epithelial PZ-HPV-7 cells was identified using flow cytometry and real time QRT-PCR. Results KMUP-1 inhibited phenylephrine-induced contractility in a concentration-dependent manner. KMUP-1 possessed potent ,1A/,1D -adrenoceptor binding inhibition activity, increased cAMP/cGMP levels and increased the expression of sGC, PKG, and PKA protein in rat prostate. Moreover, KMUP-1 inhibited phenylephrine-induced ROCK2 expression. KMUP-1 inhibited cell growth, arrested the cell cycle at G0/G1 phase and increased the expression of p21 in PZ-HPV-7 cells. Conclusions These results broaden our knowledge of sGC/cGMP/PKG and ROCK2 regulation on the relaxation and proliferation of prostate, which may help in the design of benign prostate hyperplasia (BPH) therapies that target these signaling pathways. KMUP-1 possesses the potential benefit in the treatment of BPH by its ,1A/,1D -adrenoceptor blockade, sGC activation, inhibition of PDE5A and ROCK2 and p21 protein enhancement, leading to attenuation of the smooth muscle tone and the proliferation of epithelial PZ-HPV-7 cells. The synergistic contribution of these pathways by KMUP-1 may benefit BPH patients with lower urinary tract symptoms. Prostate 67: 1397,1410, 2007. © 2007 Wiley-Liss, Inc. [source]


Vitamin D receptor (VDR) gene polymorphisms and haplotypes, interactions with plasma 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D, and prostate cancer risk

THE PROSTATE, Issue 9 2007
Bahar Mikhak
Abstract BACKGROUND The vitamin D receptor (VDR) is required for actions of vitamin D. The binding of 1,25-dihydroxyvitamin D to the VDR on prostatic epithelial cells prompts the regulation of cancer-related genes. METHODS We conducted a nested case-control study in the Health Professionals Follow-up Study to investigate the role of the VDR Cdx2, Fok1, and Bsm1 gene polymorphisms and associated haplotypes and their interaction with plasma vitamin D metabolites in relation to prostate cancer (PC) risk. RESULTS No association was found between these SNPs or their associated haplotypes and all PC subtypes except that haplotype 2 (A-f-b) with Cdx2 A, Fok1 f, and Bsm1 b alleles and haplotype 3 (A-F-B) with Cdx2 A, Fok1 F and Bsm1 B alleles compared to the most common haplotype (A-F-b), were associated with reduced risk of aggressive PC (high stage or Gleason sum ,7; P,=,0.02), both with two alleles suspected of being low risk. Carriers of the variant Cdx2 A allele who were deficient in plasma 25-hydroxyvitamin D (,15 ng/ml) compared to non-carriers with normal 25-hydroxyvitamin D, had a lower risk of total and poorly differentiated PCs (Gleason sum ,7) (P for interaction,=,0.02 and 0.04, respectively). Plasma 1,25-dihydroxyvitamin D deficiency (,26 pg/ml) was associated with a threefold risk of poorly differentiated PC (P for interaction,=,0.01) when comparing carriers of the Cdx2 A allele to non-carriers with normal 1,25-dihydroxyvitamin D. CONCLUSION In this population of men, none of the VDR polymorphisms studied was associated with susceptibility to PC. Prostate 67: 911,923, 2007. © 2007 Wiley-Liss, Inc. [source]


Vascular endothelial growth factor and angiopoietin are required for prostate regeneration

THE PROSTATE, Issue 5 2007
Gui-min Wang
Abstract BACKGROUND The regulation of the prostate size by androgens may be partly the result of androgen effects on the prostatic vasculature. We examined the effect of changes in androgen levels on the expression of a variety of angiogenic factors in the mouse prostate and determined if vascular endothelial growth factor (VEGF)-A and the angiopoietins are involved in the vascular response to androgens. METHODS Expression of angiogenic factors in prostate was quantitated using real-time PCR at different times after castration and after administration of testosterone to castrated mice. Angiopoietins were localized in prostate by immunohistochemistry and in situ hybridization. The roles of VEGF and the angiopoietins in regeneration of the prostate were examined in mice inoculated with cells expressing soluble VEGF receptor-2 or soluble Tie-2. RESULTS Castration resulted in a decrease in VEGF-A, VEGF-B, VEGF-C, placenta growth factor, FGF-2, and FGF-8 expression after 1 day. In contrast, VEGF-D mRNA levels increased. No changes in angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), hepatocyte growth factor, VEGF receptor-1, VEGF receptor-2, or tie-2 mRNA levels were observed. Administration of testosterone to castrated mice had the opposite effect on expression of these angiogenic factors. Ang-2 was expressed predominately in prostate epithelial cells whereas Ang-1 was expressed in epithelium and smooth muscle. Inoculation of mice with cells expressing soluble VEGF receptor-2 or Tie-2 blocked the increase in vascular density normally observed after administration of testosterone to castrated mice. The soluble receptors also blocked the increase in prostate weight and proliferation of prostatic epithelial cells. CONCLUSION VEGF-A and angiopoietins are required for the vascular response to androgens and for the ability of the prostate to regenerate in response to androgens. Prostate 67: 485,499, 2007. © 2007 Wiley-Liss, Inc. [source]


A new generation of monoclonal and recombinant antibodies against cell-adherent prostate specific membrane antigen for diagnostic and therapeutic targeting of prostate cancer

THE PROSTATE, Issue 13 2006
Ursula Elsässer-Beile
Abstract BACKGROUND Prostate-specific membrane antigen (PSMA) is an excellent candidate for targeting prostate cancer by virtue of its restricted expression on prostatic epithelial cells and its upregulation on prostatic carcinoma cells. PSMA is expressed on the cell surface displaying a specific three-dimensional structure. Therefore, only antibodies with a high cell binding activity will have an important impact on antibody-based imaging and therapy. METHODS Monoclonal antibodies (mAbs) and single chain antibody fragments (scFvs) were prepared from spleen cells of mice that had been immunized either with purified PSMA or a cell lysate of prostate cancer LNCaP cells containing native PSMA. mAbs and scFvs were screened for reactivity with purified PSMA and binding to PSMA-expressing LNCaP cells. RESULTS From mice immunized with purified PSMA, we obtained three mAbs (K7, K12, D20) and four scFvs (G0, G1, G2, G4), which were highly reactive with the isolated antigen, but showed weak or no reaction with viable LNCaP cells. From mice immunized with unpurified LNCaP lysate, we obtained three mAbs (3/E7, 3/F11, 3/A12), and one scFv (A5), which were reactive with purified PSMA, also showing a strong and specific binding to viable LNCaP cells and PSMA-transfected cells. CONCLUSIONS Our results suggest that only the mAbs and scFvs, that were elicited with unpurified LNCaP lysate and not with purified PSMA will be useful agents for diagnostic imaging and therapeutic applications of prostate cancer. Prostate 66: 1359,1370, 2006. © 2006 Wiley-Liss, Inc. [source]


Erythropoietin stimulates growth and STAT5 phosphorylation in human prostate epithelial and prostate cancer cells

THE PROSTATE, Issue 2 2006
Laurie Feldman
Abstract BACKGROUND Erythropoietin (Epo), the principal regulator of erythroid progenitor survival, growth, and differentiation, initiates its action by binding to its cognate cell surface receptor (EpoR). EpoR have been identified on a variety of non-hematopoietic cells, both normal and malignant, however, little is known about the function of EpoR on malignant cells. METHODS RT-PCR, Western blotting, and immunohistochemistry were used to demonstrate that prostate cancer cells express EpoR at both the gene and protein level. Cell proliferation assays and STAT5 phosphorylation were used to demonstrate Epo's mitogenic action and intracellular signaling, respectively. RESULTS We have demonstrated that transformed prostate epithelial and prostate cancer cell lines, as well as primary prostate tissue, express the EpoR. Importantly, the EpoR on prostate cells are functional, as demonstrated by the observation that each of the cell lines exhibited a dose-dependent proliferative response to Epo, and that Epo triggered STAT5b phosphorylation in the cells. CONCLUSION Human prostatic epithelial cells and prostate cancer cells express functional EpoR, and Epo serves as a growth factor for these cells. These results have implications for our understanding of normal prostatic growth and development and of the pathobiology of human prostate cancer. © 2005 Wiley-Liss, Inc. [source]


FGF17 is an autocrine prostatic epithelial growth factor and is upregulated in benign prostatic hyperplasia

THE PROSTATE, Issue 1 2004
Nathaniel Polnaszek
Abstract BACKGROUND Fibroblast growth factors (FGFs) are known to play an important role in the growth of prostatic epithelial cells. Benign prostatic hyperplasia (BPH) is characterized by increased epithelial and stromal proliferation within the transition zone of the prostate. FGF2, FGF7, and FGF9 are expressed in BPH tissue but expression of FGF17 has not been previously characterized in human prostate tissue. METHODS Expression of FGF17 in human prostate tissue and primary cultures of prostatic epithelial and stromal cells was determined by reverse-transcriptase polymerase chain reaction (RT-PCR). Growth response to FGF17 was assessed by addition of recombinant FGF17 to immortalized normal and neoplastic epithelial cell lines and primary cultures of prostatic stromal cells in the presence of insulin. Quantitative analysis of expression of FGF17 relative to keratin 18 and/or ,-actin in normal and hyperplastic prostate and prostate carcinoma was carried out by real-time quantitative RT-PCR. RESULTS FGF17 is expressed by prostatic epithelial cells and can act as an autocrine growth factor for immortalized and neoplastic prostatic epithelial cells. It can also promote stromal proliferation, although only at higher concentrations. Expression of FGF17 per epithelial cell was increased 2-fold in BPH. CONCLUSIONS FGF17 is expressed by normal, hyperplastic, and neoplastic prostatic epithelial cells and can promote epithelial proliferation in an autocrine manner. FGF17 expression is increased 2-fold in BPH and may contribute to the increased epithelial proliferation seen in this disease. © 2004 Wiley-Liss, Inc. [source]


Reduction of human prostate tumor vascularity by the ,1-adrenoceptor antagonist terazosin

THE PROSTATE, Issue 2 2001
Kaspar Keledjian
Abstract BACKGROUND We previously demonstrated that the quinazoline-derived a1-adrenoceptor antagonists doxazosin and terazosin suppress prostate cancer growth via apoptosis induction. The aim of this study was to determine the potential effect of a1-adrenoceptor antagonists on tumor vascularity of the human prostate. METHODS A total of 34 men with benign prostatic hyperplasia (BPH) who have been on terazosin treatment (for the obstructive symptoms) were pathologically diagnosed with prostate cancer following surgery. These patients were stratified according to the length of treatment periods with terazosin into two groups, 1 week,6 months, and 6,17 months. The control group consisted of prostatectomy specimens from 25 untreated prostate cancer patients undergoing surgery for localized disease. Formalin-fixed, paraffin-embedded prostate specimens were analyzed for apoptosis (TUNEL assay), cell proliferation (Ki-67), microvessel density (MVD) (von Willebrand factor/Factor VIII), vascular endothelial growth factor (VEGF) expression, and prostate specific antigen (PSA) immunoreactivity. RESULTS A significant induction of apoptosis was observed among cancerous prostatic epithelial cells in the terazosin-treated, as compared to the untreated prostate cancer specimens, while there was no significant change in the proliferative index of the same tumor cell populations after treatment. Furthermore, terazosin resulted in a significant decrease in prostate tissue MVD compared with the untreated group (P,<,0.01), that correlated with the increased apoptotic index of the cancerous areas. Tissue PSA expression in the prostatic tumor foci was also markedly reduced after terazosin treatment, while no significant changes in VEGF expression were detected. CONCLUSIONS These findings provide the first evidence that terazosin, a quinazoline-based a1-blocker decreases prostate tumor vascularity. Our study has significant clinical implications in identifying selected ,1-adrenoceptor antagonists as potential anti-tumor agents with apoptotic and anti-angiogenic effects in the human prostate that can be exploited for the treatment of advanced prostate cancer. Prostate 48:71,78, 2001. © 2001 Wiley-Liss, Inc. [source]


C-type natriuretic peptide in prostate cancer

APMIS, Issue 1 2009
SOEREN JUNGE NIELSEN
C-type natriuretic peptide (CNP) is expressed in the male reproductive organs in pigs. To examine whether the human prostate also expresses the CNP gene, we measured CNP and N-terminal proCNP in prostate cancer tissue extracts and performed immunohistochemical biopsy staining. Additionally, proCNP-derived peptides were quantitated in plasma from patients with prostate cancer. Blood was collected from healthy controls and patients before surgery for localized prostate cancer. Tissue extracts were prepared from tissue biopsies obtained from radical prostatectomy surgery. N-terminal proCNP, proCNP (1,50) and CNP were measured in plasma and tissue extracts. Biopsies were stained for CNP-22 and N-terminal proCNP. Tissue extracts from human prostate cancer contained mostly N-terminal proCNP [median 5.3 pmol/g tissue (range 1.0,12.9)] and less CNP [0.14 pmol/g tissue (0.01,1.34)]. Immunohistochemistry demonstrated the presence of the peptides in prostatic epithelial cells. The N-terminal proCNP concentrations in plasma were marginally lower in patients with localized prostate cancer compared with control subjects [13.8 pmol/l (11.0,17.2) vs. 15.1 pmol/l (10.4,23.2), p=0.002] but not enough to justify the use of N-terminal proCNP as a cancer marker. Further research is needed to establish whether measurement of proCNP-derived peptides may offer clinical information. [source]