Prolonged Application (prolonged + application)

Distribution by Scientific Domains


Selected Abstracts


Renewable Copper and Silver Amalgam Film Electrodes of Prolonged Application for the Determination of Elemental Sulfur Using Stripping Voltammetry

ELECTROANALYSIS, Issue 7 2008
Robert Piech
Abstract New, renewable copper (Hg(Cu)FE) and silver (Hg(Ag)FE) based amalgam film electrodes applied for the determination of elemental sulfur using differential pulse cathodic stripping voltammetry are presented. With surface areas adjustable from 1 to 12,mm2, both electrodes are characterized by very good surface reproducibility (,2%) and long-term stability (a few thousand measurement cycles). The mechanical refreshing of the amalgam film takes about 1,2 seconds. The effects of various factors such as instrumental parameters and the supporting electrolyte composition were optimized. Interferences from sulfides are easily removed by the addition of acid, and bubbling with argon, for Hg(Ag)FE. In the case of Hg(Cu)FE, sulfides did not interfere. The calibration graph is linear within the studied range from 16,ng L,1 to 4.8,,g L,1 for Hg(Cu)FE, and up to 6.4,,g L,1 for Hg(Ag)FE (tacc=15,s). The correlation coefficients for the two electrodes were at least 0.997. The detection limits for a low concentration of S(0) and tacc=60,s are as low as 14,ng L,1 for Hg(Cu)FE and 4,ng L,1 for Hg(Ag)FE. The proposed method was successfully applied and validated by studying the recovery of S(0) from spiked river water. [source]


Silver Amalgam Film Electrode of Prolonged Application in Stripping Chronopotentiometry

ELECTROANALYSIS, Issue 18 2007
Kapturski
Abstract The utility of the cylindrical silver-based mercury film electrode of prolonged analytical application in stripping chronopotentiometry (SCP) was examined. This electrode allowed us to obtain good reproducibility of results owing to the special electrode design, which enables regeneration of the thin layer before each measurement cycle. The accessible potential window in KNO3 (pH,2), acetate and ammonia buffers was defined, and the optimal conditions (i.e., stripping current, deposition potential and deposition time) for the determination of Cd and Pb traces were selected. The detection limits, obtained for an accumulation time of 60,s, were 0.023,,g/L for Cd and 0.075,,g/L for Pb. The response increases linearly with Cd, Pb and Zn concentration, up to at least 100,,g/L. It was also shown that the proposed procedure ensures excellent separation of the In and Tl, Pb and Tl or the In and Cd signals. The method was tested with dolomite and lake sediment samples, and good agreement with reference values was achieved. The obtained results showed good reproducibility (RSD=5,6%) and reliability. [source]


P2X2, P2X2,2 and P2X5 receptor subunit expression and function in rat thoracolumbar sympathetic neurons

JOURNAL OF NEUROCHEMISTRY, Issue 5 2001
H. Schädlich
The present study investigated the pharmacological properties of excitatory P2X receptors and P2X2 and P2X5 receptor subunit expression in rat-cultured thoracolumbar sympathetic neurons. In patch-clamp recordings, ATP (3,1000 µm; applied for 1 s) induced inward currents in a concentration-dependent manner. Pyridoxal-phosphate-6-azophenyl-2,,4,-disulfonate (PPADS; 30 µm) counteracted the ATP response. In contrast to ATP, ,,,-meATP (30 µm; for 1 s) was virtually ineffective. Prolonged application of ATP (100 µm; 10 s) induced receptor desensitization in a significant proportion of sympathetic neurons in a manner typical for P2X2,2 splice variant-mediated responses. Using single-cell RT-PCR, P2X2, P2X2,2 and P2X5 mRNA expression was detectable in individual tyrosine hydroxylase-positive neurons; coexpression of both P2X2 isoforms was not observed. Laser scanning microscopy revealed both P2X2 and P2X5 immunoreactivity in virtually every TH-positive neuron. P2X2 immunoreactivity was largely distributed over the cell body, whereas P2X5 immunoreactivity was most distinctly located close to the nucleus. In summary, the present study demonstrates the expression of P2X2, P2X2,2 and P2X5 receptor subunits in rat thoracolumbar neurons. The functional data in conjunction with a preferential membranous localization of P2X2/P2X2,2 compared with P2X5 suggest that the excitatory P2X responses are mediated by P2X2 and P2X2,2 receptors. Apparently there exist two types of P2X2 receptor-bearing sympathetic neurons: one major population expressing the unspliced isoform and another minor population expressing the P2X2,2 splice variant. [source]


Dynamics of P2X7 receptor pore dilation: Pharmacological and functional consequences

DRUG DEVELOPMENT RESEARCH, Issue 2-3 2001
I.P. Chessell
Abstract The biophysical and functional properties of the human P2X7 receptor, expressed recombinantly in HEK-293 cells or natively in THP-1 pro-monocytic cells, were investigated in the context of pore dilation and externalisation of mature interleukin 1, (IL1,). In HEK-293 cells, the agonist 2,- and 3,-O-(4-benzoylbenzoyl)-ATP (BzATP) caused concentration-dependent inward currents (EC50 59 ,M) and with prolonged application this agonist caused a gradual increase in inward current culminating in a plateau. This increase in current was associated with pore dilation, determined by intracellular accumulation of YO-PRO-1. BzATP displayed increased potency at the pore-dilated form of the P2X7 receptor (EC50 17 ,M), and positive correlations between apparent receptor density and speed of pore dilation were observed. A monoclonal antibody selectively blocked current mediated by the naļve receptor, while currents through pore-dilated receptors were not significantly affected, which together suggest a conformational change at the level of the receptor during the dilation event. The release of mature IL1, from THP-1 cells was independent of P2X7 -mediated cell lysis, as determined by study of lactate dehydrogenase release. Moreover, using conditions designed to minimise pore dilation (using buffers containing 2 mM Ca2+ and 1 mM Mg2+), BzATP caused significant release of IL1,, but without concomitant YO-PRO-1 accumulation, indicating pore dilation is not required for IL1, release. In addition, short (4-min) incubation of THP-1 cells with BzATP (terminated by enzymatic degradation of BzATP using apyrase) resulted in significant quantities of IL1, release some 60 min later, suggesting commitment of cells to release IL1, can be triggered with only brief receptor ligation. These findings suggest that receptor expression and ligation time are critical factors for selecting multiple functional states of P2X7. Drug Dev. Res. 53:60,65, 2001. © 2001 Wiley-Liss, Inc. [source]


Characterization and expression of ATP P2X4 receptor from embryonic chick skeletal muscle

DRUG DEVELOPMENT RESEARCH, Issue 1 2001
Xuenong Bo
Abstract Previous pharmacological experiments have indicated the existence of ATP P2X receptors in chick embryonic skeletal muscles. In this study we cloned a P2X4 -like cDNA encoding a protein of 385 amino acids, which shares 75% and 76% identity with rat and human P2X4 receptors, respectively. Functional studies of this cP2X4 receptor expressed in Xenopus oocytes showed that ATP induced a fast inward current, which was partially desensitized upon prolonged application of ATP. The ATP-induced currents were concentration-dependent, with an EC50 of 9.5 ,M. Adenosine 5,- O -(thio)triphosphate and 2-methylthioATP very weak agonists. ,,,-methyleneATP was almost inactive. In contrast to their potentiating effects on recombinant rat P2X4 receptors, both suramin and pyridoxalphosphate-6-azophenyl-2,,4,-disulfonic acid partially blocked ATP-induced currents. TrinitrophenylATP was able to block ATP-induced response completely, with an IC50 of 4.7 ,M. Northern blot and RT-PCR analysis showed that cP2X4 mRNAs were mainly expressed in skeletal muscle, brain, and gizzard of day 10 chick embryos. Lower levels of expression were also detected in liver, heart, and retina. Whole-mount in situ hybridization showed that cP2X4 mRNAs were expressed in the brain, spinal cord, notochord, gizzard, and skeletal muscle. The physiological functions of cP2X4 receptors in embryonic skeletal muscle remain unclear at present. Drug Dev. Res. 53:22,28, 2001. © 2001 Wiley-Liss, Inc. [source]


Differential sensitivity of medium- and large-sized striatal neurons to NMDA but not kainate receptor activation in the rat

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2001
Carlos Cepeda
Abstract Infrared videomicroscopy and differential interference contrast optics were used to identify medium- and large-sized neurons in striatal slices from young rats. Whole-cell patch-clamp recordings were obtained to compare membrane currents evoked by application of N -methyl- d -aspartate (NMDA) and kainate. Inward currents and current densities induced by NMDA were significantly smaller in large- than in medium-sized striatal neurons. The negative slope conductance for NMDA currents was greater in medium- than in large-sized neurons and more depolarization was required to remove the Mg2+ blockade. In contrast, currents induced by kainate were significantly greater in large-sized neurons whilst current densities were approximately equal in both cell types. Spontaneous excitatory postsynaptic currents occurred frequently in medium-sized neurons but were relatively infrequent in large-sized neurons. Excitatory postsynaptic currents evoked by electrical stimulation were smaller in large- than in medium-sized neurons. A final set of experiments assessed a functional consequence of the differential sensitivity of medium- and large-sized neurons to NMDA. Cell swelling was used to examine changes in somatic area in both neuronal types after prolonged application of NMDA or kainate. NMDA produced a time-dependent increase in somatic area in medium-sized neurons whilst it produced only minimal changes in large interneurons. In contrast, application of kainate produced significant swelling in both medium- and large-sized cells. We hypothesize that reduced sensitivity to NMDA may be due to variations in receptor subunit composition and/or the relative density of receptors in the two cell types. These findings help define the conditions that put neurons at risk for excitotoxic damage in neurological disorders. [source]