Proline Accumulation (proline + accumulation)

Distribution by Scientific Domains


Selected Abstracts


Physiological and Biochemical Responses of Hexaploid and Tetraploid Wheat to Drought Stress

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2000
V. Chandrasekar
An experiment was conducted to investigate the physiological and biochemical responses of two hexaploids viz., C 306 (water stress tolerant) and Hira (water stress susceptible), and two tetraploids, HW 24 (Triticum dicoccum) and A 9-30-1 (Triticum durum) wheat genotypes to water stress under pot culture condition. Water stress was imposed for a uniform period of 10 days at 50, 60 and 70 days after sowing (DAS) and observations were recorded at 60, 70 and 80 DAS. Total dry matter and plant height were recorded at harvest. Water stress caused a decline in relative water content (RWC), chlorophyll and carotenoid content, membrane stability and nitrate reductase activity and increased accumulation of proline at all stages and abscisic acid (ABA) at 80 DAS in all the genotypes. Both the tetraploids showed a lower reduction in RWC and highest ABA accumulation under water stress. Among the hexaploids Hira showed the most decline in RWC and the lowest ABA accumulation. The tetraploids also showed comparatively higher carotenoid content and membrane stability, closely followed by C 306, while Hira showed the minimum response under water stress. Nitrate reductase activity and chlorophyll content under irrigated conditions were highest in Hira but under water stress the lowest per cent decline was observed in C 306, followed by HW 24, A 9-30-1, and Hira. Proline accumulation under water stress conditions was highest in hexaploids C 306 and Hira and lowest in tetraploids HW 24 and A 9-30-1. Tetraploids HW 24, followed by A 9-30-1 maintained higher plant height and total dry matter (TDM) under water stress and also showed a lower per cent decline under stress than hexaploids C 306 and Hira. From the results it is clear that proline accumulation did not contribute to better drought tolerance of tetraploids than hexaploids. It is also apparent that water stress tolerance is the result of the cumulative action of various physiological processes, and all the parameters/processes may not be positively associated with the drought tolerance of a particular tolerant genotype. [source]


Evaluation of Drought-Related Traits and Screening Methods at Different Developmental Stages in Spring Barley

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 5 2008
F. Szira
Abstract Despite intensive research and breeding efforts, the physiological and quantitative genetic bases of drought tolerance are still poorly understood. The comparison of results obtained from different sources is also complex, because different testing methods may lead to controversial conclusions. This report discusses various drought stress experiments (hydroponics and in soil) in which the plant tolerance was studied at different developmental stages. Tests were performed in the germination, seedling and adult plant stages on the parental lines of five well-known barley-mapping populations. The results suggest that drought tolerance is a stage-specific trait and changes during the life cycle. The effect of drought stress depended not only on the duration and intensity of water deficiency, but also on the developmental phase in which it began. To induce the same type of stress and to obtain comparable tolerance information from the replications, it is recommended that drought stress should be induced at the same growth stage. Correlations between the traits, commonly associated with improved drought resistance (high relative water content under stress, proline accumulation, osmoregulation) with stress tolerance indexes, are also presented, while the advantages and disadvantages of the most frequently used screening methods are discussed. [source]


Physiological and Biochemical Responses of Hexaploid and Tetraploid Wheat to Drought Stress

JOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 4 2000
V. Chandrasekar
An experiment was conducted to investigate the physiological and biochemical responses of two hexaploids viz., C 306 (water stress tolerant) and Hira (water stress susceptible), and two tetraploids, HW 24 (Triticum dicoccum) and A 9-30-1 (Triticum durum) wheat genotypes to water stress under pot culture condition. Water stress was imposed for a uniform period of 10 days at 50, 60 and 70 days after sowing (DAS) and observations were recorded at 60, 70 and 80 DAS. Total dry matter and plant height were recorded at harvest. Water stress caused a decline in relative water content (RWC), chlorophyll and carotenoid content, membrane stability and nitrate reductase activity and increased accumulation of proline at all stages and abscisic acid (ABA) at 80 DAS in all the genotypes. Both the tetraploids showed a lower reduction in RWC and highest ABA accumulation under water stress. Among the hexaploids Hira showed the most decline in RWC and the lowest ABA accumulation. The tetraploids also showed comparatively higher carotenoid content and membrane stability, closely followed by C 306, while Hira showed the minimum response under water stress. Nitrate reductase activity and chlorophyll content under irrigated conditions were highest in Hira but under water stress the lowest per cent decline was observed in C 306, followed by HW 24, A 9-30-1, and Hira. Proline accumulation under water stress conditions was highest in hexaploids C 306 and Hira and lowest in tetraploids HW 24 and A 9-30-1. Tetraploids HW 24, followed by A 9-30-1 maintained higher plant height and total dry matter (TDM) under water stress and also showed a lower per cent decline under stress than hexaploids C 306 and Hira. From the results it is clear that proline accumulation did not contribute to better drought tolerance of tetraploids than hexaploids. It is also apparent that water stress tolerance is the result of the cumulative action of various physiological processes, and all the parameters/processes may not be positively associated with the drought tolerance of a particular tolerant genotype. [source]


Membrane stabilization by abscisic acid under cold aids proline in alleviating chilling injury in maize (Zea mays L.) cultured cells

PLANT CELL & ENVIRONMENT, Issue 8 2002
W. P. Chen
Abstract Previous studies of maize suspension-cultured cells showed that abscisic acid (ABA) treatment at warm temperatures improved the tolerance of cells to subsequent chilling. In the present study, it is shown that both ABA-treated and untreated maize cells accumulated proline in response to chilling. However, ABA-treated cells displayed less lipid peroxidation during chilling, and thus, unlike untreated cells, were able to retain the accumulated proline intracellularly. Proline application experiments indicate that an intracellular proline level higher than 2 µmole (g FW),1 prior to chilling was needed to meaningfully reduce chilling-enhanced lipid peroxidation and significantly improve chilling tolerance. The results suggest that total proline accumulation in ABA-treated as well as untreated cells during chilling was enough to potentially improve chilling tolerance, but proline leakage rendered the control cells unable to benefit from the endogenous synthesis of proline in relation to the alleviation of chilling injury. Proline participated in chilling tolerance improvement in ABA-treated maize cells, as evidenced by: (1) the inhibition of proline accumulation by l -methionine- d, l -sulphoximine (MSO), an inhibitor of glutamine synthetase, reduced ABA-improved chilling tolerance, and (2) the addition of glutamine into the medium prevented the MSO-induced reduction in chilling tolerance. The revised relationship between proline accumulation and membrane stability at cold is discussed in the light of these current findings. [source]


Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis

THE PLANT JOURNAL, Issue 1 2008
Gyöngyi Székely
Summary ,-1-pyrroline-5-carboxylate synthetase enzymes, which catalyse the rate-limiting step of proline biosynthesis, are encoded by two closely related P5CS genes in Arabidopsis. Transcription of the P5CS genes is differentially regulated by drought, salinity and abscisic acid, suggesting that these genes play specific roles in the control of proline biosynthesis. Here we describe the genetic characterization of p5cs insertion mutants, which indicates that P5CS1 is required for proline accumulation under osmotic stress. Knockout mutations of P5CS1 result in the reduction of stress-induced proline synthesis, hypersensitivity to salt stress, and accumulation of reactive oxygen species. By contrast, p5cs2 mutations cause embryo abortion during late stages of seed development. The desiccation sensitivity of p5cs2 embryos does not reflect differential control of transcription, as both P5CS mRNAs are detectable throughout embryonic development. Cellular localization studies with P5CS,GFP gene fusions indicate that P5CS1 is sequestered into subcellular bodies in embryonic cells, where P5CS2 is dominantly cytoplasmic. Although proline feeding rescues the viability of mutant embryos, p5cs2 seedlings undergo aberrant development and fail to produce fertile plants even when grown on proline. In seedlings, specific expression of P5CS2,GFP is seen in leaf primordia where P5CS1,GFP levels are very low, and P5CS2,GFP also shows a distinct cell-type-specific and subcellular localization pattern compared to P5CS1,GFP in root tips, leaves and flower organs. These data demonstrate that the Arabidopsis P5CS enzymes perform non-redundant functions, and that P5CS1 is insufficient for compensation of developmental defects caused by inactivation of P5CS2. [source]