Home About us Contact | |||
Pro-inflammatory Cytokine Tumour Necrosis Factor (pro-inflammatory + cytokine_tumour_necrosis_factor)
Selected AbstractsOnco-miR-155 targets SHIP1 to promote TNF,-dependent growth of B cell lymphomasEMBO MOLECULAR MEDICINE, Issue 5 2009Irene M. Pedersen Abstract Non-coding microRNAs (miRs) are a vital component of post-transcriptional modulation of protein expression and, like coding mRNAs harbour oncogenic properties. However, the mechanisms governing miR expression and the identity of the affected transcripts remain poorly understood. Here we identify the inositol phosphatase SHIP1 as a bonafide target of the oncogenic miR-155. We demonstrate that in diffuse large B cell lymphoma (DLBCL) elevated levels of miR-155, and consequent diminished SHIP1 expression are the result of autocrine stimulation by the pro-inflammatory cytokine tumour necrosis factor , (TNF,). Anti-TNF, regimen such as eternacept or infliximab were sufficient to reduce miR-155 levels and restored SHIP1 expression in DLBCL cells with an accompanying reduction in cell proliferation. Furthermore, we observed a substantial decrease in tumour burden in DLBCL xenografts in response to eternacept. These findings strongly support the concept that cytokine-regulated miRs can function as a crucial link between inflammation and cancer, and illustrate the feasibility of anti-TNF, therapy as a novel and immediately accessible (co)treatment for DLBCL. [source] Combined cell wall polysaccharide, mycotoxin and bacterial lipopolysaccharide exposure and inflammatory cytokine responsesAPMIS, Issue 7 2009LENE JOHANNESSEN Human exposure to environmental microbes occurs regularly. Microbial compounds may interact with each other to affect cellular responses. We hypothesized that interactions between microbial compounds could modulate inflammatory cytokine responses in vitro. We investigated monocyte production of the pro-inflammatory cytokine tumour necrosis factor-, (TNF-,) and the regulatory cytokine interleukin-10 (IL-10) after combined exposure to the fungal cell wall polysaccharide mannan and to the ,-glucan laminarin, the mycotoxin citrinin and bacterial lipopolysaccharide (LPS). Interactions between the cell wall microbial compounds were estimated statistically in a general linear mixed model. We found that LPS (100 ng/ml) and the used ,-glucan (up to 1000 ,g/ml) significantly interacted with each other to reduce TNF-, production. Mannan (up to 100 ,g/ml) did not interact with the ,-glucan, but interacted with LPS. IL-10 production was induced by LPS only. The mycotoxin citrinin did not induce cytokine production, but was toxic to the cells in a dose- and time-dependent manner. However, non-toxic doses of citrinin reduced LPS-induced IL-10 production while LPS-induced TNF-, production was not similarly reduced by citrinin. In conclusion, interactions between microbial compounds can modulate cellular inflammatory cytokine production and experimental investigations of one compound at a time could give misleading conclusions about these combined effects. [source] IMPLICATIONS OF CROSS-TALK BETWEEN TUMOUR NECROSIS FACTOR AND INSULIN-LIKE GROWTH FACTOR-1 SIGNALLING IN SKELETAL MUSCLECLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 7 2008Miranda D Grounds SUMMARY 1Inflammation, particularly the pro-inflammatory cytokine tumour necrosis factor (TNF), increases necrosis of skeletal muscle. Depletion of inflammatory cells, such as neutrophils, cromolyn blockade of mast cell degranulation or pharmacological blockade of TNF reduces necrosis of dystrophic myofibres in the mdx mouse model of the lethal childhood disease Duchenne muscular dystrophy (DMD). 2Insulin-like growth factor-1 (IGF-1) is a very important cytokine for maintenance of skeletal muscle mass and the transgenic overexpression of IGF-1 within muscle cells reduces necrosis of dystrophic myofibres in mdx mice. Thus, IGF-1 usually has the opposite effect to TNF. 3Activation of TNF signalling via the c-Jun N-terminal kinase (JNK) can inhibit IGF-1 signalling by phosphorylation and conformational changes in insulin receptor substrate (IRS)-1 downstream of the IGF-1 receptor. Such silencing of IGF-1 signalling in situations where inflammatory cytokines are elevated has many implications for skeletal muscle in vivo. 4The basis for these interactions between TNF and IGF-1 is discussed with specific reference to clinical consequences for myofibre necrosis in DMD and also for the wasting (atrophy) of skeletal muscles that occurs in very old people and in cachexia associated with inflammatory disorders. [source] Role of the pro-inflammatory cytokines TNF-, and IL-1, in HIV-associated dementiaEUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 7 2006N. A. C. H. Brabers Abstract Human immunodeficiency virus-1 (HIV-1)-infected and immune-activated macrophages and microglia secrete neurotoxins. Two of these neurotoxins are the pro-inflammatory cytokines tumour necrosis factor-, (TNF-,) and interleukin-1, (IL-1,), which are thought to play a major role in inducing neuronal death. Both TNF-, and IL-1, increase the permeability of the blood,brain barrier, through which subsequently HIV-infected monocytes can enter the brain. They both induce over-stimulation of the NMDA-receptor via several pathways, resulting in a lethal neuronal increase in Ca2+ levels. Additionally, TNF-, co-operates with several other proinflammatory mediators to enhance their toxic effects. Although most research has focused on the neurotoxic effects of TNF-, and IL-1, in HAD, there is also evidence that these cytokines can be neuroprotective. In this paper the effect of TNF-, and IL-1, on neuronal life and death in HAD is discussed. [source] Methylenedioxymethamphetamine (MDMA, ,Ecstasy'): a stressor on the immune systemIMMUNOLOGY, Issue 4 2004Thomas J. Connor Summary Drug abuse is a global problem of considerable concern to health. One such health concern stems from the fact that many drugs of abuse have immunosuppressive actions and consequently have the potential to increase susceptibility to infectious disease. This article is focused on the impact of the amphetamine derivative, methylenedioxymethamphetamine (MDMA; ,Ecstasy') on immunity. Research conducted over the last 5 years, in both laboratory animals and humans, has demonstrated that MDMA has immunosuppressive actions. Specifically, MDMA suppresses neutrophil phagocytosis, suppresses production of the pro-inflammatory cytokines tumour necrosis factor-, (TNF-,) and interleukin (IL)-1,, and increases production of the endogenous immunosuppressive cytokine (IL-10), thereby promoting an immunosuppressive cytokine phenotype. MDMA also suppresses circulating lymphocyte numbers, with CD4+ T cells being particularly affected, and alters T-cell function as indicated by reduced mitogen-stimulated T-cell proliferation, and a skewing of T-cell cytokine production in a T helper 2 (Th2) direction. For the most part, the aforementioned effects of MDMA are not the result of a direct action of the drug on immune cells, but rather caused by the release of endogenous immunomodulatory substances. Consequently, the physiological mechanisms that are thought to underlie the immunosuppressive effects of MDMA will be discussed. As many of the physiological changes elicited by MDMA closely resemble those induced by acute stress, it is suggested that exposure to MDMA could be regarded as a ,chemical stressor' on the immune system. Finally, the potential of MDMA-induced immunosuppression to translate into significant health risks for abusers of the drug will be discussed. [source] |