Home About us Contact | |||
Proinflammatory Cytokines IL-1 (proinflammatory + cytokine_il-1)
Selected AbstractsInflammatory cytokines in glomerulonephritisNEPHROLOGY, Issue 2002RC ATKINS SUMMARY: The importance of various inflammatory cytokines in mediating renal disease is now recognized, and the potential for the use of cytokine blockade as a therapeutic intervention is under active investigation. Studies in rat anti-glomerular basement membrane (GBM) disease model showed that antagonism of the proinflammatory cytokine IL-1 inhibited induction of glomerulonephritis, and prevented progression of established disease. A second cytokine Tumour Necrosis Factor-alpha (TNF-,) had similar proinflammatory effects to IL-1 in this model. Blocking the actions of both cytokines together, however, had no added benefit. Another cytokine Macrophage Migration Inhibitory Factor (MIF) has been shown to override the anti-inflammatory effects of corticosteriods. Renal MIF is markedly up-regulated in rat anti-GBM disease and blocking studies have demonstrated MIF plays a pathological role in mediating renal injury in this model. the importance of MIF in glomerulonephritis has been demonstrated by the fact that MIF is produced locally within the kidney, that it reflects the severity of the cellular immune response, and can be measured in the urine. Macrophage Migration Inhibitory Factor is up-regulated in human glomerular disease and correlates with loss of renal function and is thus a potential target for therapy for human glomerulonephritis. Thus, the inflammatory cytokines, IL 1, TNF-, and MIF each play a role in the immune/inflammatory process in glomerulonephritis. Blocking their action reduces disease and cytokine blocking agents have therapeutic potential. [source] Knockdown of Fc, receptor III in an arthritic temporomandibular joint reduces the nociceptive response in ratsARTHRITIS & RHEUMATISM, Issue 10 2010Phillip R. Kramer Objective Fc, receptor III (Fc,RIII; CD16) is a receptor expressed on immune cells that selectively binds IgG molecules. IgG binding results in cellular activation and cytokine release. IgG is an important factor in arthritis and can be found in the arthritic temporomandibular joint (TMJ). We undertook this study to test the hypothesis that a reduction in Fc,RIII expression in TMJ tissues would reduce the nociceptive and inflammatory responses in an inflamed joint. Methods Small interfering RNA (siRNA), either naked or complexed with linear polyethyleneimine, was injected into the superior joint space of the TMJ in rats. After administration of siRNA the joint was injected with saline or with Freund's complete adjuvant to induce arthritis. Nociceptive responses were quantitated in the rat by measuring the animal's meal duration. Fc,RIII expression in the TMJ tissue was assayed by immunocytochemistry or Western blotting. Cleavage of Fc,RIII transcript was then assayed by 5, rapid amplification of complementary DNA ends. Interleukin-1, (IL-1,) and IgG content was measured in the TMJ tissue by enzyme-linked immunosorbent assay. Results Injection of Fc,RIII siRNA reduced the amount of Fc,RIII in the TMJ tissues, and the transcript was cleaved in a manner consistent with an RNA interference mechanism. Moreover, injection of Fc,RIII siRNA reduced the nociceptive response of rats with an arthritic TMJ and reduced the amount of the proinflammatory cytokine IL-1,. Conclusion Fc,RIII contributes to the pain resulting from inflammatory arthritis of the TMJ, and siRNA has the potential to be an effective treatment for this disorder. [source] Influenza A viruses with truncated NS1 as modified live virus vaccines: Pilot studies of safety and efficacy in horsesEQUINE VETERINARY JOURNAL, Issue 1 2009T. M. Chambers Summary Reasons for performing study: Three previously described NS1 mutant equine influenza viruses encoding carboxyterminally truncated NS1 proteins are impaired in their ability to inhibit type I IFN production in vitro and are replication attenuated, and thus are candidates for use as a modified live influenza virus vaccine in the horse. Hypothesis: One or more of these mutant viruses is safe when administered to horses, and recipient horses when challenged with wild-type influenza have reduced physiological and virological correlates of disease. Methods: Vaccination and challenge studies were done in horses, with measurement of pyrexia, clinical signs, virus shedding and systemic proinflammatory cytokines. Results: Aerosol or intranasal inoculation of horses with the viruses produced no adverse effects. Seronegative horses inoculated with the NS1-73 and NS1-126 viruses, but not the NS1-99 virus, shed detectable virus and generated significant levels of antibodies. Following challenge with wild-type influenza, horses vaccinated with NS1-126 virus did not develop fever (>38.5°C), had significantly fewer clinical signs of illness and significantly reduced quantities of virus excreted for a shorter duration post challenge compared to unvaccinated controls. Mean levels of proinflammatory cytokines IL-1, and IL-6 were significantly higher in control animals, and were positively correlated with peak viral shedding and pyrexia on Day +2 post challenge. Conclusion and clinical relevance: These data suggest that the recombinant NS1 viruses are safe and effective as modified live virus vaccines against equine influenza. This type of reverse genetics-based vaccine can be easily updated by exchanging viral surface antigens to combat the problem of antigenic drift in influenza viruses. [source] c-Jun N-terminal kinase is largely involved in the regulation of tricellular tight junctions via tricellulin in human pancreatic duct epithelial cellsJOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2010Takashi Kojima Tricellulin (TRIC) is a tight junction protein at tricellular contacts where three epithelial cells meet, and it is required for the maintenance of the epithelial barrier. To investigate whether TRIC is regulated via a c-Jun N-terminal kinase (JNK) pathway, human pancreatic HPAC cells, highly expressed at tricellular contacts, were exposed to various stimuli such as the JNK activators anisomycin and 12- O -tetradecanoylphorbol 13-acetate (TPA), and the proinflammatory cytokines IL-1,, TNF,, and IL-1,. TRIC expression and the barrier function were moderated by treatment with the JNK activator anisomycin, and suppressed not only by inhibitors of JNK and PKC but also by siRNAs of TRIC. TRIC expression was induced by treatment with the PKC activator TPA and proinflammatory cytokines IL-1,, TNF,, and IL-1,, whereas the changes were inhibited by a JNK inhibitor. Furthermore, in normal human pancreatic duct epithelial cells using hTERT-transfected primary cultured cells, the responses of TRIC expression to the various stimuli were similar to those in HPAC cells. TRIC expression in tricellular tight junctions is strongly regulated together with the barrier function via the JNK transduction pathway. These findings suggest that JNK may be involved in the regulation of tricellular tight junctions including TRIC expression and the barrier function during normal remodeling of epithelial cells, and prevent disruption of the epithelial barrier in inflammation and other disorders in pancreatic duct epithelial cells. J. Cell. Physiol. 225: 720,733, 2010. © 2010 Wiley-Liss, Inc. [source] Tumor necrosis factor , blockade exacerbates murine psoriasis-like disease by enhancing Th17 function and decreasing expansion of Treg cellsARTHRITIS & RHEUMATISM, Issue 2 2010Hak-Ling Ma Objective Patients with psoriasis and psoriatic arthritis respond well to tumor necrosis factor , (TNF,) blockers in general; however, there is now mounting evidence that a small cohort of patients with rheumatoid arthritis who receive TNF, blockers develop psoriasis. This study was undertaken to explore the mechanisms underlying TNF, blockade,induced exacerbation of skin inflammation in murine psoriasis-like skin disease. Methods Skin inflammation was induced in BALB/c scid/scid mice after they received CD4+CD45RBhighCD25, (naive CD4) T cells from donor mice. These mice were treated with either anti,interleukin-12 (anti,IL-12)/23p40 antibody or murine TNFRII-Fc fusion protein and were examined for signs of disease, including histologic features, various cytokine levels in the serum, and cytokine or FoxP3 transcripts in the affected skin and draining lymph node (LN) cells. In a separate study, naive CD4+ T cells were differentiated into Th1 or Th17 lineages with anti-CD3/28 magnetic beads and appropriate cytokines in the presence or absence of TNF,. Cytokine gene expression from these differentiated cells was also determined. Results Neutralization of TNF, exacerbated skin inflammation and markedly enhanced the expression of the proinflammatory cytokines IL-1,, IL-6, IL-17, IL-21, and IL-22 but suppressed FoxP3 expression in the skin and reduced the number of FoxP3-positive Treg cells in the draining LNs. TNF, also demonstrated a divergent role during priming and reactivation of naive T cells. Conclusion These results reveal a novel immunoregulatory role of TNF, on Th17 and Treg cells in some individuals, which may account for the exacerbation of skin inflammation in some patients who receive anti-TNF treatments. [source] Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal,induced murine peritoneal model of acute goutARTHRITIS & RHEUMATISM, Issue 1 2009William John Martin Objective To determine whether infiltrating monocytes, neutrophils, or resident macrophages contribute to the early inflammatory response to monosodium urate monohydrate (MSU) crystals in vivo. Methods MSU crystal,induced inflammation was monitored using a peritoneal model of acute gout. The production of proinflammatory cytokines (interleukin-1, [IL-1,], tumor necrosis factor , [TNF,], IL-6) by resident macrophages, infiltrating monocytes, and neutrophils during the onset of gout was determined by flow cytometry. Infiltrating and resident peritoneal cells were cultured with MSU crystals ex vivo, and proinflammatory cytokine production was determined by multiplex cytokine array. Activated macrophages on the visceral epithelial lining of the peritoneum were identified by immunofluorescence histochemistry. The inflammatory immune response to MSU crystals was then compared with the inflammatory response in mice depleted of resident macrophages by pretreatment with clodronate liposomes. Results The production of cytokines in vivo preceded the influx of Gr-1intermediate7/4+ monocytes. Monocytes and neutrophils recruited during the inflammatory phase of the response to MSU crystals failed to produce proinflammatory cytokines either in vivo, or ex vivo following restimulation with MSU crystals. Stimulation of the naive peritoneal resident cell population with MSU crystals ex vivo resulted in positive staining of resident macrophages for the proinflammatory cytokines IL-1,, TNF,, and IL-6. Depletion of the resident macrophage population resulted in a significant decrease in both MSU crystal,induced neutrophil infiltration and proinflammatory cytokine production in vivo despite the presence of infiltrating monocytes. Conclusion These data indicate that resident macrophages, rather than infiltrating monocytes or neutrophils, are important for initiating and driving the early proinflammatory phase of acute gout. [source] |