Proinflammatory Cytokines (proinflammatory + cytokine)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Proinflammatory Cytokines

  • other proinflammatory cytokine

  • Terms modified by Proinflammatory Cytokines

  • proinflammatory cytokine expression
  • proinflammatory cytokine il-1
  • proinflammatory cytokine il-6
  • proinflammatory cytokine interleukin
  • proinflammatory cytokine production
  • proinflammatory cytokine tumor necrosis factor

  • Selected Abstracts


    Site-specific proteolysis of cyclooxygenase-2: A putative step in inflammatory prostaglandin E2 biosynthesis

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2007
    Arturo Mancini
    Abstract Cyclooxygenase-2 (COX-2) catalyzes the rate-limiting step in inflammatory prostanoid biosynthesis. Transcriptional, post-transcriptional, and post-translational covalent modifications have been defined as important levels of regulation for COX-2 gene expression. Here, we describe a novel regulatory mechanism in primary human cells involving regulated, sequence-specific proteolysis of COX-2 that correlates with its catalytic activity and ultimately, the biosynthesis of prostaglandin E2 (PGE2). Proinflammatory cytokines induced COX-2 expression and its proteolysis into stable immunoreactive fragments of 66, 42,44, 34,36, and 28 kDa. Increased COX-2 activity (PGE2 release) was observed coincident with the timing and degree of COX-2 proteolysis with correlation analysis confirming a linear relationship (R2,=,0.941). Inhibition of induced COX-2 activity with non-steroidal anti-inflammatory drugs (NSAIDs) and COX-2 selective inhibitors also abrogated cleavage. To determine if NSAID inhibition of proteolysis was related to drug-binding-induced conformational changes in COX-2, we assayed COX-inactive NSAID derivatives that fail to bind COX-2. Interestingly, these compounds suppressed COX-2 activity and cleavage in a correlated manner, thus suggesting that the observed NSAID-induced inhibition of COX-2 cleavage occurred through COX-independent mechanisms, presumably through the inhibition of proteases involved in COX-2 processing. Corroborating this observation, COX-2 cleavage and activity were mutually suppressed by calpain/cathepsin protease inhibitors. Our data suggest that the nascent intracellular form of COX-2 may undergo limited proteolysis to attain full catalytic capacity. J. Cell. Biochem. 101: 425,441, 2007. © 2006 Wiley-Liss, Inc. [source]


    Review: Energy regulation and neuroendocrine,immune control in chronic inflammatory diseases

    JOURNAL OF INTERNAL MEDICINE, Issue 6 2010
    R. H. Straub
    Abstract., Straub RH, Cutolo M, Buttgereit F, Pongratz G (University Hospital Regensburg, Regensburg, Germany; University of Genova, Genova, Italy; and Charité University Medicine Berlin, Berlin, Germany). Energy regulation and neuroendocrine,immune control in chronic inflammatory diseases (Review). J Intern Med 2010; 267:543,560. Energy regulation (EnR) is most important for homoeostatic regulation of physiological processes. Neuroendocrine pathways are involved in EnR. We can separate factors that provide energy-rich fuels to stores [parasympathetic nervous system (PSNS), insulin, insulin-like growth factor-1, oestrogens, androgens and osteocalcin] and those that provide energy-rich substrates to consumers [sympathetic nervous system (SNS), hypothalamic,pituitary,adrenal axis, thyroid hormones, glucagon and growth hormone]. In chronic inflammatory diseases (CIDs), balanced energy-rich fuel allocation to stores and consumers, normally aligned with circadian rhythms, is largely disturbed due to the vast fuel consumption of an activated immune system (up to 2000 kJ day,1). Proinflammatory cytokines such as tumour necrosis factor or interleukins 1, and 6, circulating activated immune cells and sensory nerve fibres signal immune activation to the rest of the body. This signal is an appeal for energy-rich fuels as regulators are switched on to supply energy-rich fuels (,energy appeal reaction'). During evolution, adequate EnR evolved to cope with nonlife-threatening diseases, not with CIDs (huge negative selection pressure and reduced reproduction). Thus, EnR is inadequate in CIDs leading to many abnormalities, including sickness behaviour, anorexia, hypovitaminosis D, cachexia, cachectic obesity, insulin resistance, hyperinsulinaemia, dyslipidaemia, fat deposits near inflamed tissue, hypoandrogenaemia, mild hypercortisolaemia, activation of the SNS (hypertension), CID-related anaemia and osteopenia. Many of these conditions can contribute to the metabolic syndrome. These signs and symptoms become comprehensible in the context of an exaggerated call for energy-rich fuels by the immune system. We propose that the presented pathophysiological framework may lead to new therapeutical approaches and to a better understanding of CID sequence. [source]


    Pomegranate peel extract prevents liver fibrosis in biliary-obstructed rats

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 9 2007
    Hale Z. Toklu
    ABSTRACT Punica granatum L. (pomegranate) is a widely used plant that has high nutritional value. The aim of this study was to assess the effect of chronic administration of pomegranate peel extract (PPE) on liver fibrosis induced by bile duct ligation (BDL) in rats. PPE (50 mg kg,1) or saline was administered orally for 28 days. Serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) levels were determined to assess liver function and tissue damage. Proinflammatory cytokines (tumor necrosis factor-alpha and interleukin 1 beta) in the serum and anti-oxidant capacity (AOC) were measured in plasma samples. Samples of liver tissue were taken for measurement of hepatic malondialdehyde (MDA) and glutathione (GSH) levels, myeloperoxidase (MPO) activity and collagen content. Production of reactive oxidants was monitored by chemilumi-nescence assay. Serum AST, ALT, LDH and cytokines were elevated in the BDL group compared with the control group; this increase was significantly decreased by PPE treatment. Plasma AOC and hepatic GSH levels were significantly depressed by BDL but were increased back to control levels in the PPE-treated BDL group. Increases in tissue MDA levels and MPO activity due to BDL were reduced back to control levels by PPE treatment. Similarly, increased hepatic collagen content in the BDL rats was reduced to the level of the control group with PPE treatment. Thus, chronic PPE administration alleviated the BDL-induced oxidative injury of the liver and improved the hepatic structure and function. It therefore seems likely that PPE, with its antioxidant and antifibrotic properties, may be of potential therapeutic value in protecting the liver from fibrosis and oxidative injury due to biliary obstruction. [source]


    Treatment of alcoholic liver disease

    LIVER TRANSPLANTATION, Issue S2 2007
    Christopher Paul Day
    Severe alcoholic steatohepatitis (ASH) is the major complication of advanced alcoholic liver disease (ALD) and has a high mortality even when treated with corticosteroids. Despite the importance of reactive oxygen species in the pathophysiology of ALD and ASH, antioxidants provide no benefit in the treatment of patients with ASH. Proinflammatory cytokines are important in the pathophysiology of ALD and might mediate most of the inflammatory aspects of these disorders. New treatment modalities in ASH might involve antagonism of proinflammatory cytokines such as tumor necrosis factor (TNF) by specific antibodies or other TNF-interfering treatment strategies. Propylthiouracil and S-adenosyl methionine may be beneficial to patients with alcoholic cirrhosis, but both require further randomized, controlled trials before their use can be recommended. Liver transplantation is an effective therapy for patients with advanced alcoholic cirrhosis who have not recovered after a period of abstinence. Liver Transpt 13: S69,S75. 2007. © 2007 AASLD. [source]


    Plasma Cytokines and Chemokines in Primary Graft Dysfunction Post-Lung Transplantation

    AMERICAN JOURNAL OF TRANSPLANTATION, Issue 2 2009
    S. A. Hoffman
    Primary graft dysfunction (PGD) after lung transplantation causes significant morbidity and mortality. We aimed to determine the role of cytokines and chemokines in PGD. This is a multicenter case,control study of PGD in humans. A Luminex analysis was performed to determine plasma levels of 25 chemokines and cytokines before and at 6, 24, 48 and 72 h following allograft reperfusion in 25 cases (grade 3 PGD) and 25 controls (grade 0 PGD). Biomarker profiles were evaluated using a multivariable logistic regression and generalized estimating equations. PGD cases had higher levels of monocyte chemotactic protein-1 (MCP-1)/chemokine CC motif ligand 2 (CCL2) and interferon (IFN)-inducible protein (IP-10)/chemokine CXC motif ligand 10 (CXCL10) (both p < 0.05), suggesting recruitment of monocytes and effector T cells in PGD. In addition, PGD cases had lower levels of interleukin (IL-13) (p = 0.05) and higher levels of IL-2R (p = 0.05). Proinflammatory cytokines, including tumor necrosis factor (TNF)-,, and IFN-, decreased to very low levels after transplant in both PGD cases and controls, exhibiting no differences between the two groups. These findings were independent of clinical variables including diagnosis in multivariable analyses, but may be affected by cardiopulmonary bypass. Profound injury in clinical PGD is distinguished by the upregulation of selected chemokine pathways, which may useful for the prediction or early detection of PGD if confirmed in future studies. [source]


    Anti,interleukin-6 receptor antibody therapy favors adrenal androgen secretion in patients with rheumatoid arthritis: A randomized, double-blind, placebo-controlled study

    ARTHRITIS & RHEUMATISM, Issue 6 2006
    Rainer H. Straub
    Objective Proinflammatory cytokines such as tumor necrosis factor (TNF) were demonstrated to inhibit adrenal steroidogenesis in patients with rheumatoid arthritis (RA), and this was particularly evident in the increase in adrenal androgen levels during anti-TNF therapy. This study investigated the influence on steroidogenesis of an interleukin-6 (IL-6),neutralizing strategy using IL-6 receptor monoclonal antibodies (referred to as MRA). Methods In a placebo-controlled, double-blind, randomized study over 12 weeks in 29 patients with RA being treated with prednisolone, 13 of whom received placebo and 16 of whom received 8 mg MRA/kg body weight, the effects of MRA on serum levels of adrenocorticotropic hormone (ACTH), cortisol, 17-hydroxyprogesterone (17OHP), dehydroepiandrosterone (DHEA), DHEA sulfate (DHEAS), androstenedione (ASD), estrone, and 17,-estradiol, as well as their respective molar ratios, were determined. Results MRA therapy markedly improved clinical signs of inflammation (the erythrocyte sedimentation rate, swollen joint score, and Disease Activity Score in 28 joints). Serum levels of ACTH and cortisol and the molar ratio of cortisol to ACTH did not change. Although serum levels of DHEA and DHEAS remained stable during therapy, the DHEAS:DHEA molar ratio significantly decreased in treated patients (P = 0.048). Serum levels of ASD as well as the ASD:cortisol and ASD:17OHP molar ratios increased in MRA-treated patients (minimum P < 0.004). Serum levels of estrone and 17,-estradiol did not change. but the estrone:ASD molar ratio (an indicator of aromatization) decreased during 12 weeks of MRA treatment (P = 0.001). Conclusion Neutralization of IL-6 increases secretion of biologically active adrenal androgens in relation to that of precursor hormones and estrogens. This is another important indication that proinflammatory cytokines interfere with adrenal androgen steroidogenesis in patients with RA. [source]


    Role of tumor-derived proinflammatory cytokines GM-CSF, TNF-,, and IL-12 in the migration and differentiation of antigen-presenting cells in cervical carcinoma

    CANCER, Issue 3 2007
    Henry J.M.A.A. Zijlmans MD
    Abstract BACKGROUND. Proinflammatory cytokines are important in modifying the activity, differentiation, and migration of antigen-presenting cells and may influence the survival of cancer patients. The study assessed whether GM-CSF, TNF-,, and IL-12, produced by cervical cancer cells, are important for the activity, differentiation, and migration of antigen-presenting cells. METHODS. In 90 patients with cervical carcinoma the number of monocytes/tumor-associated macrophages (TAM), mature dendritic cells (DC), and Langerhans cells (LHC) was determined using immunohistochemistry. An RNA in situ hybridization technique was used to measure the expression level of GM-CSF, TNF-,, IL-12p35, and IL-12p40. RESULTS. TAM were detected intraepithelial as well as in the stroma of the tumor. LHC were only detected intraepithelial and mature DC only in the tumor stroma. The number of TAM correlated positively with the number of mature DC. The expression levels of GM-CSF and TNF-, correlated positively with the number of TAM and DC. TNF-, showed a negative correlation with the number of LHC. A significant correlation between the expression of functional IL-12 (IL-12p40) and stromal TAM was found. The expression of GM-CSF, TNF-,, and IL-12p40 did not correlate significantly with disease-free survival. However, high IL-12p40 expression was associated with a favorable cumulative overall survival. CONCLUSIONS. The results suggest that GM-CSF as well as TNF-,, produced by cervical carcinoma cells, may play a role in the differentiation of monocytes into mature DC. Furthermore, TNF-, may influence the migration of LHC from the tumor. Cancer 2007;109:556,565. © 2007 American Cancer Society. [source]


    JTE-607, a multiple cytokine production inhibitor, induces apoptosis accompanied by an increase in p21waf1/cip1 in acute myelogenous leukemia cells

    CANCER SCIENCE, Issue 3 2010
    Nobuyuki Tajima
    (Cancer Sci 2010; 101: 774,781) Proinflammatory cytokines and growth factors have been thought to play crucial roles in the pathology of acute myelogenous leukemia (AML) by supporting the proliferation and survival of AML cells in an autocrine and paracrine manner, although further elucidation is required. JTE-607 was originally identified as a multiple cytokine inhibitor that suppresses production of proinflammatory cytokines from lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells. Herein, we report that JTE-607 exhibits inhibitory activity on the growth of AML cell lines accompanying reduction of the proinflammatory cytokine and growth factor production. In in vitro studies, JTE-607 suppressed expression and production of cytokines, which are spontaneously up-regulated in AML cell lines. JTE-607 also abrogated proliferation of AML cells in a concentration range in which colony formation of normal bone marrow cells was not affected. The growth inhibition by JTE-607 was characterized by induction of cell-cycle arrest at the S-phase and apoptosis, accompanied by a decrease in c-Myc and increase in p21waf1/cip1. In a leukemia model engrafted with U-937 cells, JTE-607 significantly prolonged survival in mice and reduced human cytokine mRNA levels in the bone marrow. These results suggest the usefulness of JTE-607 in therapeutic applications for patients with hypercytokinemia and aggressive AML cell proliferation. [source]


    Proinflammatory cytokines (IL-17, IL-6, IL-18 and IL-12) and Th cytokines (IFN- ,, IL-4, IL-10 and IL-13) in patients with allergic asthma

    CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 2 2001
    C. K. Wong
    Allergen-reactive T helper type-2 (Th2) cells and proinflammatory cytokines have been suggested to play an important role in the induction and maintenance of the inflammatory cascade in allergic asthma. We compared the plasma concentrations of novel proinflammatory cytokines IL-17 and IL-18, other proinflammatory cytokines IL-6 and IL-12, Th2 cytokines IL-10 and IL-13, and intracellular interferon- , (IFN- ,) and IL-4 in Th cells of 41 allergic asthmatics and 30 sex- and age-matched health control subjects. Plasma cytokines were measured by enzyme-linked immunosorbent assay. Intracellular cytokines were quantified by flow cytometry. Plasma IL-18, IL-12, IL-10, IL-13 concentrations were significantly higher in allergic asthmatic patients than normal control subjects (IL-18: median 228·35 versus 138·72 pg/ml, P < 0·001; IL-12: 0·00 versus 0·00 pg/ml, P = 0·001; IL-10: 2·51 versus 0·05 pg/ml, P < 0·034; IL-13: 119·38 versus 17·89 pg/ml, P < 0·001). Allergic asthmatic patients showed higher plasma IL-17 and IL-6 concentrations than normal controls (22·40 versus 11·86 pg/ml and 3·42 versus 0·61 pg/ml, respectively), although the differences were not statistically significant (P = 0·077 and 0·053, respectively). The percentage of IFN- , -producing Th cells was significantly higher in normal control subjects than asthmatic patients (23·46 versus 5·72%, P < 0·001) but the percentage of IL-4 producing Th cells did not differ (0·72 versus 0·79%, P > 0·05). Consequently, the Th1/Th2 cell ratio was significantly higher in normal subjects than asthmatic patients (29·6 versus 8·38%, P < 0·001). We propose that allergic asthma is characterized by an elevation of both proinflammatory and Th2 cytokines. The significantly lower ratio of Th1/Th2 cells confirms a predominance of Th2 cells response in allergic asthma. [source]


    Interleukin-10 is associated with resistance to febrile seizures: Genetic association and experimental animal studies

    EPILEPSIA, Issue 4 2009
    Yoshito Ishizaki
    Summary Purpose:, Febrile seizures (FS) are the most common form of childhood convulsions. Many reports have shown that a proinflammatory cytokine, interleukin-1 (IL-1) ,, may have a facilitatory effect on the development of FS. We have previously shown that the IL1B -511C/T single nucleotide polymorphism (SNP) is associated with simple FS of sporadic occurrence. The balance between pro- and antiinflammatory cytokines influences the regulation of infections and could, therefore, play a role in the pathogenesis of FS. Here, to determine whether pro- and antiinflammatory cytokine genes are responsible for the susceptibility to FS, we have performed an association study on functional SNPs of cytokine genes in FS patients and controls. Methods:, The promoter SNPs of four inflammatory cytokine genes (IL6 -572C/G, IL8 -251A/T, IL10 -592A/C and TNFA -1037C/T) were examined in 249 patients with FS (186 simple and 63 complex FS) and 225 controls. Because the IL10 -592 SNP showed a positive association with FS, two additional SNPs (IL10 -1082A/G and -819T/C) were subjected to haplotype analysis. Furthermore, we examined the in vivo role of IL-10 in hyperthermia-induced seizures using immature animal models. Results:, The frequencies of the IL10 -592C allele and -1082A/-819C/-592C haplotype were significantly decreased in FS as compared with in controls (p = 0.014 and 0.013, respectively). The seizure threshold temperature in the IL-10,administered rats was significantly higher than that in the saline-treated control ones (p = 0.027). Conclusions:, The present study suggests that IL-10 is genetically associated with FS and, contrary to IL-1,, confers resistance to FS. [source]


    Causal Links between Brain Cytokines and Experimental Febrile Convulsions in the Rat

    EPILEPSIA, Issue 12 2005
    James G. Heida
    Summary:,Purpose: Despite the prevalence of febrile convulsions (FCs), their pathophysiology has remained elusive. We tested the hypothesis that components of the immune response, particularly the proinflammatory cytokine interleukin-1, (IL-1,) and its naturally occurring antagonist interleukin-1 receptor antagonist (IL-1ra) may play a role in the genesis of FC. Methods: Postnatal day 14 rats were treated with lipopolysaccharide (LPS; 200 ,g/kg, i.p.) followed by a subconvulsant dose of kainic acid (1.75 mg/kg, i.p.). Brains were harvested at and 2 h after onset of FCs to measure brain levels of IL-1, and IL-1ra. Separate groups of animals were given intracerebroventricular (ICV) injections of IL-1,, or IL-1ra in an attempt to establish a causal relation between the IL-1,/IL-1ra system and FCs. Results: Animals with FCs showed increased IL-1, in the hypothalamus and hippocampus but not in the cortex compared with noFC animals that also received LPS and kainic acid. This increase was first detected in the hippocampus at onset of FCs. No detectable difference in IL-1ra was found in brain regions examined in either group. When animals were treated with IL-1, ICV, a dose-dependant increase was noted in the proportion of animals that experienced FCs, whereas increasing doses of IL-1ra, given to separate groups of animals, were anticonvulsant. Conclusions: Our results suggest that excessive amounts of IL-1, may influence the genesis of FCs. This may occur by overproduction of IL-1,, or by alteration in the IL-1,/IL-1ra ratio in the brain after an immune challenge. [source]


    Extracellular lysosome-associated membrane protein-1 (LAMP-1) mediates autoimmune disease progression in the NOD model of type 1 diabetes

    EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2005
    Marcelo De Carvalho Bittencourt
    Abstract Treatment (from 5 to 25,weeks of age) with a novel blocking monoclonal antibody, mAb I-10, directed against the plasma membrane (pm) form of LAMP-1, protected against development of autoimmune diabetes in the NOD mouse. A shorter course of treatment, i.e. from 5 to 12,weeks of age, significantly reduced the occurrence of insulitis as well as disease onset. Interfering with pm-LAMP-1 required continuous treatment as tolerance was not observed when treatment was stopped, and no higher proportion of cells with a T regulatory phenotype (e.g. CD4+CD25+) were induced. The mechanism appears to involve modulating a proinflammatory cytokine, as the proportion of pancreatic-infiltrating IFN-,-positive cells was significantly reduced in the mAb I-10-treated group. These results demonstrate an unexpected role for pm-LAMP-1 in autoimmune disease progression, and suggest that further investigation should be performed to understand how this molecule modulates IFN-,-driven responses. [source]


    Blockade of caspase-1 increases neurogenesis in the aged hippocampus

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2007
    Carmelina Gemma
    Abstract Adult hippocampal neurogenesis dramatically decreases with increasing age, and it has been proposed that this decline contributes to age-related memory deficits. Central inflammation contributes significantly to the decrease in neurogenesis associated with ageing. Interleukin-1, is a proinflammatory cytokine initially synthesized as an inactive precursor that is cleaved by caspase-1 to generate the biologically active mature form. Whether IL-1, affects neurogenesis in the aged hippocampus is unknown. Here we analysed cells positive for 5-bromo-2-deoxyuridine (BrdU; 50 mg/kg) in animals in which cleavage of IL-1, was inhibited by the caspase-1 inhibitor Ac-YVAD-CMK (10 pmol). Aged (22 months) and young (4 months) rats received Ac-YVAD-CMK for 28 days intracerebroventricularly through a brain infusion cannula connected to an osmotic minipump. Starting on day 14, animals received a daily injection of BrdU for five consecutive days. Unbiased stereology analyses performed 10 days after the last injection of BrdU revealed that the total number of newborn cells generated over a 5-day period was higher in young rats than in aged rats. In addition, there was a 53% increase in the number of BrdU-labelled cells of the aged Ac-YVAD-CMK-treated rats compared to aged controls. Immunofluorescence studies were performed to identify the cellular phenotype of BrdU-labelled cells. The increase in BrdU-positive cells was not due to a change in the proportion of cells expressing neuronal or glial phenotypes in the subgranular zone. These findings demonstrate that the intracerebroventricular administration of Ac-YVAD-CMK reversed the decrease in hippocampal neurogenesis associated with ageing. [source]


    Chronic interleukin-6 alters the level of synaptic proteins in hippocampus in culture and in vivo

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2007
    Elly J. F. Vereyken
    Abstract There is now considerable evidence that the level of expression of the proinflammatory cytokine, interleukin-6 (IL-6), is increased in the central nervous system (CNS) during neuroinflammatory conditions such as occurs in neurological disorders and in disease and injury. However, our understanding of the consequences of increased expression of IL-6 on the CNS is still limited, especially with respect to the developing nervous system, which is known to be particularly vulnerable to environmental factors. To address this issue, we investigated the properties of cultured hippocampal neurons exposed chronically to IL-6 during the main period of morphological and physiological development, which occurs during the first 2 weeks of culture. IL-6 was tested at 500 U/mL, considered to reflect a pathophysiologic concentration. The morphological features of neuronal development in the control and IL-6-treated cultures appeared similar. However, Western blot analysis showed a significant reduction in the level of Group-II metabotropic receptors (mGluR2/3) and L-type Ca2+ channels in the IL-6-treated cultures. A similar reduction in mGluR2/3 and L-type Ca2+ channel protein was observed in transgenic mice that over-express IL-6 in the CNS through astrocyte production starting early in development. Analysis of Ca2+ signals produced by spontaneous synaptic network activity in the hippocampal cultures and effects of a mGluR2/3 agonist and antagonist showed that the reduced levels of mGluR2/3 impact on the functional properties of hippocampal synaptic network activity. These results have important implications relative to the mechanisms responsible for altered CNS function during conditions associated with increased levels of IL-6 in the CNS. [source]


    Secretion of matrix metalloproteinase-9 by the proinflammatory cytokine, IL-1,: a role for the dual signalling pathways, Akt and Erk

    GENES TO CELLS, Issue 6 2003
    A. R. M. Ruhul Amin
    Background: Matrix metalloproteinases including MMP-9 mediate matrix destruction during chronic inflammatory diseases such as arthritis and atherosclerosis. MMP-9 up-regulation by inflammatory cytokines involve interactions between several transcription factors including activator protein-1 and NF,B. The upstream regulatory pathways are less well understood. Results: To search for the mechanism of tissue destruction in the process of inflammatory disorders, we investigated the signalling pathway critical for the activation of MMP-9 expression and secretion by IL-1,. Treatment of Balb 3T3 cells with IL-1, activated MMP-9 transcription and subsequent secretion in a time- and dose-dependent manner. Concomitantly, IL-1, treatment of cells activated phosphorylation of Akt, Erk and p38. Treatment of cells with either LY294002, a PI3K inhibitor, or expression of a dominant negative form of Akt drastically suppressed the IL-1,-dependent secretion of MMP-9. Pretreatment of cells with a MEK1 inhibitor, U0126, also strongly inhibited IL-1,-dependent secretion of MMP-9. In contrast, pre-treatment with a specific p38 kinase inhibitor, SB203580, had no effect on IL-1,-dependent secretion of MMP-9. In addition, cells expressing constitutively active form of Akt or MEK1 showed no clear activation of MMP-9 secretion, whereas these cells responded well to IL-1, treatment. However, co-transfection of cells with both active Akt and MEK1 was sufficient to induce MMP-9 secretion without stimulation with IL-1,. Conclusion: Taken together, our results suggest that IL-1, stimulation of cells activates MMP-9 secretion by the activation of the dual signalling pathways, the PI3K-Akt and MEK1-Erk and constitutive activation of these pathways were sufficient to induce MMP-9 secretion. [source]


    TLR3-mediated signal induces proinflammatory cytokine and chemokine gene expression in astrocytes: Differential signaling mechanisms of TLR3-induced IP-10 and IL-8 gene expression

    GLIA, Issue 3 2006
    Chanhee Park
    Abstract Viral infection is one of the leading causes of brain encephalitis and meningitis. Recently, it was reported that Toll-like receptor-3 (TLR3) induces a double-stranded RNA (dsRNA)-mediated inflammatory signal in the cells of the innate immune system, and studies suggested that dsRNA may induce inflammation in the central nervous system (CNS) by activating the CNS-resident glial cells. To explore further the connection between dsRNA and inflammation in the CNS, we have studied the effects of dsRNA stimulation in astrocytes. Our results show that the injection of polyinosinic-polycytidylic acid (poly(I:C)), a synthetic dsRNA, into the striatum of the mouse brain induces the activation of astrocytes and the expression of TNF-,, IFN-,, and IP-10. Stimulation with poly(I:C) also induces the expression of these proinflammatory genes in primary astrocytes and in CRT-MG, a human astrocyte cell line. Furthermore, our studies on the intracellular signaling pathways reveal that poly(I:C) stimulation activates I,B kinase (IKK), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) in CRT-MG. Pharmacological inhibitors of nuclear factor-,B (NF-,B), JNK, ERK, glycogen synthase kinase-3, (GSK-3,), and dsRNA-activated protein kinase (PKR) inhibit the expression of IL-8 and IP-10 in astrocytes, indicating that the activation of these signaling molecules is required for the TLR3-mediated chemokine gene induction. Interestingly, the inhibition of PI3 kinase suppressed the expression of IP-10, but upregulated the expression of IL-8, suggesting differential roles for PI3 kinase, depending on the target genes. These data suggest that the TLR3 expressed on astrocytes may initiate an inflammatory response upon viral infection in the CNS. © 2005 Wiley-Liss, Inc. [source]


    Role for CXCR2 and CXCL1 on glia in multiple sclerosis

    GLIA, Issue 1 2006
    Kakuri M. Omari
    Abstract As part of a need to understand myelin repair mechanisms, molecular pathways underlying oligodendrocyte behavior and central nervous system (CNS) remyelination are currently key topics in multiple sclerosis (MS). In the present study, we report expression of a chemoattractant receptor of the immune system, the chemokine receptor, CXCR2, on normal and proliferating oligodendrocytes in active MS lesions. Proliferating oligodendrocytes were occasionally associated with reactive astrocytes positive for CXCL1 (GRO-,), the ligand for CXCR2. CXCL1 expression was not seen on astrocytes in control and normal CNS tissue, while CXCR2 expression was constitutive on oligodendrocytes. At the functional level, following stimulation with the proinflammatory cytokine, interleukin-1, (IL-1,), we found high-level synthesis of CXCL1 by human fetal astrocytes in vitro. In contrast, human oligodendrocytes in culture expressed the receptor, CXCR2, constitutively. We propose that the concurrence of CXCR2 on oligodendrocytes and induced CXCL1 on hypertrophic astrocytes in MS provides a novel mechanism for recruitment of oligodendrocytes to areas of damage, an essential prerequisite for lesion repair in this devastating human condition. © 2005 Wiley-Liss, Inc. [source]


    Carriage of a tumor necrosis factor polymorphism amplifies the cytotoxic T-lymphocyte antigen 4 attributed risk of primary biliary cirrhosis: Evidence for a gene,gene interaction,

    HEPATOLOGY, Issue 1 2010
    Brian D. Juran
    Common genetic variants significantly influence complex diseases such as primary biliary cirrhosis (PBC). We recently reported an association between PBC and a single nucleotide polymorphism (rs231725) of the immunoreceptor gene cytotoxic T-lymphocyte antigen 4 (CTLA4). We hypothesized that PBC risk attributed to this polymorphism might be increased by propensity to an overly robust inflammatory response. Thus, we examined its potential interaction with the commonly studied ,308AG promoter polymorphism (rs1800629) of the tumor necrosis factor (TNF) gene for which the variant TNF2A allele causes increased TNF production. The polymorphisms were genotyped in 866 PBC patients and 761 controls from independent US and Canadian registries; the effects of individual single nucleotide polymorphisms (SNPs) and their interaction on PBC risk was assessed by logistic regression. The reported association of PBC with the CTLA4 "A/A" genotype was replicated in the Canadian cohort and significant for PBC risk in the combined data (odds ratio [OR], 1.68; P = 0.0005). TNF2A allele frequency was elevated in PBC patients, but only reached borderline significance using the combined data (OR, 1.21; P = 0.042). Analysis showed that TNF2A carriage was significantly increased in CTLA4 "A/A" PBC patients compared with CTLA4 "A/A" controls (39.7% versus 16.5%, P = 0.0004); no apparent increase of TNF2A carriage was noted in CTLA4 "A/G" or "G/G" individuals. Finally, interaction under a logistic model was highly significant, as TNF2A carriage in combination with the CTLA4 "A/A" genotype was present in 6.5% of PBC patients, compared with 1.7% of controls (OR, 3.98; P < 0.0001). Conclusion: TNF2A amplifies the CTLA4 rs231725 "A/A" genotype risk for PBC. Although the mechanisms remain unclear, the premise that deficiency in T-cell regulation resulting in an increased risk of PBC is amplified by overexpression of an important proinflammatory cytokine provides a basis for future functional studies. HEPATOLOGY 2010 [source]


    Roles of the novel interleukin-12-associated cytokine, interleukin-23, in the regulation of T-cell-mediated immunity

    HEPATOLOGY RESEARCH, Issue 2007
    Masanori Matsui
    Interleukin (IL)-12 is a heterodimeric proinflammatory cytokine formed by a 35-kDa light chain (p35) and a 40-kDa heavy chain (p40). This cytokine is a key regulator of cell-mediated immunity, and therefore should have therapeutic potential in infectious diseases and tumors. Recently, a novel IL-12-associated cytokine, IL-23 has been discovered. IL-23 is also a heterodimer that consists of the p40 subunit of IL-12 and a novel subunit, p19. Several studies have shown that IL-23 possesses immunoadjuvant activity against tumor and infectious diseases as well as IL-12. On the other hand, there is increasing evidence that IL-12 and IL-23 have discrete roles in the regulation of T-cell-mediated immunity despite their structural similarities. IL-12 leads to the development ofinterferon-,-producing T-helper type 1 (Th1) cells, whereas IL-23 amplifies and stabilizes a new CD4+ T-cell subset, Th17 producing IL-17. The IL-23/Th17 axis rather than the IL-12/Th1 axis contributes to several immune-mediated inflammatory autoimmune diseases. Furthermore, IL-23/IL-17 promotes tumor incidence and growth. Therefore, IL-23 and Th17 are attracting considerable attention at present. Taken together, these findings suggest that IL-23 may be an immunoadjuvant against infectious diseases and tumors, and a viable target for the treatment of inflammatory diseases. [source]


    Characterization of epithelial IL-8 response to inflammatory bowel disease mucosal E. coli and its inhibition by mesalamine,

    INFLAMMATORY BOWEL DISEASES, Issue 2 2008
    Sreedhar Subramanian MD
    Abstract Background: Mucosally adherent E. coli are found in inflammatory bowel disease (IBD) and colon cancer. They promote release of the proinflammatory cytokine interleukin-8 (IL-8). We explored mechanisms for this release and its inhibition by drugs. Methods: IL-8 release from colon epithelial cells in response to mucosal E. coli isolates from IBD, colon cancer, and controls was characterized at the cellular and molecular level. Results: IL-8 response of HT29 cells was greater with Crohn's disease (689 ± 298 [mean ± SD] pg IL-8/mL at 4 hours, n = 7) and colon cancer isolates (532 ± 415 pg/mL, n = 14) than with ulcerative colitis (236 ± 58 pg/mL, n = 6) or control isolates (236 ± 100 pg/mL, n = 6, P < 0.0001). Bacterial supernatants contained shed flagellin that triggered IL-8 release. For whole bacteria the IL-8 response to E. coli that agglutinate red blood cells (548 ± 428 pg IL-8/mL, n = 16), a function that correlates with epithelial invasion, was greater than for nonhemagglutinators (281 ± 253 pg/mL, n = 17; P < 0.0001). This was particularly marked among E. coli that, although flagellate, could not release IL-8 from TLR5-transfected HEK293 cells. IL-8 release was mediated by extracellular-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) and inhibited by mesalamine, but not hydrocortisone, at therapeutic concentrations. Conclusions: Mucosa-associated E. coli shed flagellin that elicits epithelial IL-8 release but this may only become relevant when the mucosal barrier is weakened to expose basolateral TLR5. Adherent and invasive IBD and colon cancer E. coli isolates also elicit a flagellin-independent IL-8 response that may be relevant when the mucosal barrier is intact. The IL-8 release is MAPK-dependent and inhibited by mesalamine. (Inflamm Bowel Dis 2007) [source]


    Local and systemic interleukin-18 and interleukin-18-binding protein in children with inflammatory bowel disease

    INFLAMMATORY BOWEL DISEASES, Issue 1 2008
    Steven T. Leach
    Abstract Background: Interleukin-18 (IL-18) is increased in the inflamed mucosa of patients with Crohn's disease (CD). The balance between this pleiotropic proinflammatory cytokine and its natural inhibitor, IL-18-binding protein (IL-18BP), may contribute to the pathogenesis of inflammatory bowel disease (IBD). Methods: Serum and mucosal biopsies were collected from children with IBD, from children with celiac disease, and from controls. Biopsies were maintained in culture for 24 hours, and supernatant was collected. Serum and supernatant IL-18 and IL-18BPa concentrations were measured by immunoassay. Disease activity score (PCDAI) and standard serum inflammatory markers (albumin, platelets, ESR, and CRP) were recorded. Results: Serum IL-18 was greater in children with CD (537 pg/mL) than in controls (335 pg/mL; P < 0.05) but not in children with ulcerative colitis (UC) or IBD type unclassified (IBDU). Mucosal IL-18 was greater in children with CD and UC/IBDU than in controls (P < 0.01). Serum IL-18BPa was increased in children with CD compared with that in controls (3.9 versus 2.6 ng/mL; P < 0.05), but was not elevated in children with UC/IBDU. Furthermore, calculated free-serum IL-18 was elevated in CD, but not UC/IBDU, compared with that in controls (P = 0.001). Total and free-serum IL-18 were elevated in severe CD relative to in mild/moderate disease. Conclusions: IL-18, produced in the colons of children with IBD, may contribute to local inflammatory changes. Systemic IL-18 level may be a useful indicator of gut inflammation. Furthermore, free IL-18 is greatly elevated in children with CD, suggesting that compensatory increases in IL-18BPa are insufficient. Further exploration of the role of this cytokine in the pathogenesis of IBD is now required. (Inflamm Bowel Dis 2007) [source]


    Role of interleukin-18 and its receptor in hepatocellular carcinoma associated with hepatitis C virus infection

    INTERNATIONAL JOURNAL OF CANCER, Issue 3 2006
    Masami Asakawa
    Abstract Interleukin (IL)-18 is a proinflammatory cytokine that is up-regulated in patients with hepatitis C virus (HCV) infection, which is the most common underlying disease in hepatocellular carcinoma (HCC). The purpose of our study was to investigate the role of IL-18 in HCC associated with HCV infection. Sixty-five patients with HCC and HCV infections who received curative surgical resections were examined in our study. The expression of the IL-18 receptor was investigated in HCC tissues obtained from these patients and in 2 HCC cell lines. Nuclear factor (NF)-,B activity and the expression of Bcl-xL and xIAP mRNA were tested in the cell lines using recombinant human (rh) IL-18. The IL-18 receptor was expressed in both the HCC tissues and the cell lines. NF-,B activation and the expression of Bcl-xL and xIAP mRNA were increased by rhIL-18. Moreover, rhIL-18 suppressed the apoptosis of HCC cells which was induced by etoposide in vitro. The overall survival rate (55.4%) was significantly worse in the IL-18 receptor-positive patients than in the IL-18 receptor-negative patients (p = 0.015). In a Cox multivariate analysis, the expression of the IL-18 receptor was found to be a significant predictor of a poor outcome in HCC patients. The expression of the IL-18 receptor and an antiapoptotic mechanism involving NF-,B activation in HCC cells may be implicated in a poor patient outcome. © 2005 Wiley-Liss, Inc. [source]


    Expression and activity of IL-17 in cutaneous T-cell lymphomas (mycosis fungoides and sezary syndrome)

    INTERNATIONAL JOURNAL OF CANCER, Issue 1 2004
    Arnaud Cirée
    Abstract Interleukin-17 (IL-17) is a proinflammatory cytokine mainly produced by activated CD4+ CD45RO T cells. In mice, we have demonstrated that, depending on the model, IL-17 may act as a tumor growth-promoting or -inhibiting factor. In order to address the relevance of these models in human tumors, we look for the natural expression and activity of IL-17 in mycosis fungoides (MF) and Sezary syndrome (SS). These cutaneous T-cell lymphomas were selected because they are usually CD3+ CD4+ CD45RO+, a phenotype similar to nontransformed T cells producing IL-17. We show that in vitro activated malignant T cells derived from MF or SS patients express IL-17 mRNA and secrete this cytokine. However, IL-17 does not act in vitro as a growth factor for MF or SS cell lines. In addition, 5 out of 10 MF/SS biopsies expressed IL-17 mRNA, while this cytokine was not detected in normal skin. IL-17 was not observed in the biopsies derived from 2 patients initially identified as MF, whereas an upregulation of this cytokine was clearly demonstrated during progression of the disease in these patients. An association between IL-17 expression and polymorphonuclear neutrophil infiltration was also recorded in this group of MF/SS patients. A more detailed analysis of 2 patients with a pustular form of MF and SS revealed that IL-17 may participate in the recruitment of polymorphonuclear neutrophils via a paracrine mechanism involving keratinocyte-released IL-8. This study is the first report demonstrating that some human tumor cells could express IL-17, a cytokine that represents an early event in the development of the inflammatory reaction within the tumor microenvironment, a process that may influence tumor phenotype and growth. © 2004 Wiley-Liss, Inc. [source]


    The interleukin-25 gene located in the inflammatory bowel disease (IBD) 4 region: no association with inflammatory bowel disease

    INTERNATIONAL JOURNAL OF IMMUNOGENETICS, Issue 5 2003
    C. Büning
    Summary Genetic predisposition has been suggested to play an important role in the pathogenesis of inflammatory bowel diseases (IBDs). Linkage studies have identified a Crohn's disease susceptibility locus on chromosome 14 (14q11,12; IBD4). Interleukin-25 (IL-25) is a newly identified proinflammatory cytokine that has been shown to promote Th2 responses by inducing cytokines such as IL-4, IL-5 and IL-13. The IL-25 gene is located within this susceptibility region at 14q11.2. As IBDs are characterized by an imbalance of the Th1/Th2 cytokine response, we hypothesized that genetic alterations within the IL-25 gene might contribute to IBD. First, direct sequencing of the coding regions of the IL-25 gene in 40 patients with Crohn's disease or ulcerative colitis revealed only a newly reported polymorphism (c424C/A) in exon 2. Next, the frequency of this polymorphism was further investigated in 151 patients with Crohn's disease, 111 patients with ulcerative colitis, and 119 healthy controls to determine its clinical relevance. The genotypes of the c424C/A polymorphism did not reveal any significant differences between patients with Crohn's disease or ulcerative colitis and controls. Genoytype,phenotype relations in patients with Crohn's disease showed a comparable distribution of the c424C/A polymorphism in all subgroups of the Vienna classification. In summary, our data indicate that genetic alterations in the coding regions of the IL-25 gene are unlikely to play a role in IBDs, but the c424C/A polymorphism in the IL-25 gene should be investigated for a potential association with other chronic inflammatory and inherited disorders such as autoimmune diseases. [source]


    The Schnitzler syndrome: Chronic urticaria and monoclonal gammopathy , an autoinflammatory syndrome?

    JOURNAL DER DEUTSCHEN DERMATOLOGISCHEN GESELLSCHAFT, Issue 8 2008
    Elisabeth Eiling
    Summary Schnitzler syndrome describes the simultaneous occurrence of monoclonal gammopathy and chronic urticaria with at least two additional minor symptoms (arthralgia, bone pain, fever of uncertain origin, hepato- or splenomegaly, lymphadenopathy, increased erythrocyte sedimentation rate, leukocytosis/thrombocytosis or increased bone density). Schnitzler syndrome is not wellknown and very likely under-recognized. Comprehensive diagnostic examinations are necessary to rule out other diseases, especially those of hematologic origin. Close interdisciplinary collaboration is mandatory. The etiology of Schnitzler syndrome is unclear, but the rapid response to the interleukin-1 receptor inhibitor anakinra underlines the pivotal role which the proinflammatory cytokine interleukin-1 may play in the pathophysiology of this potentially autoinflammatory disorder. [source]


    Parvovirus B19 nonstructural (NS1) protein as a transactivator of interleukin-6 synthesis: Common pathway in inflammatory sequelae of human parvovirus infections?

    JOURNAL OF MEDICAL VIROLOGY, Issue 2 2002
    Leslie Ann Mitchell PhD
    Abstract This review focuses on the role that human parvovirus B19 nonstructural (NS1) protein as a transactivator of the proinflammatory cytokine, interleukin-6 (IL-6), might play in triggering the multiparametric inflammatory outcomes of B19 infection. Parvovirus B19 is a ubiquitous virus, and it is often expressed during conditions of immunodepression including that induced by long-term chemotherapy, viral infection (HIV, HTLV-1), or genetic immunodeficiency disorders. Through NS1 expression, B19 may contribute to the immune dysregulation associated with these disorders, or serve as a cofactor in enhancing retroviral replication. Hence, NS1 transactivation of proinflammatory cytokine promoters such as IL-6 may be pivotal in triggering the various inflammatory and autoimmune disorders that have been linked to parvovirus B19 infections. J. Med. Virol. 67:267,274, 2002. © 2002 Wiley-Liss, Inc. [source]


    Interleukin-1,: a bridge between inflammation and excitotoxicity?

    JOURNAL OF NEUROCHEMISTRY, Issue 1 2008
    Birgit Fogal
    Abstract Interleukin-1 (IL-1) is a proinflammatory cytokine released by many cell types that acts in both an autocrine and/or paracrine fashion. While IL-1 is best described as an important mediator of the peripheral immune response during infection and inflammation, increasing evidence implicates IL-1 signaling in the pathogenesis of several neurological disorders. The biochemical pathway(s) by which this cytokine contributes to brain injury remain(s) largely unidentified. Herein, we review the evidence that demonstrates the contribution of IL-1, to the pathogenesis of both acute and chronic neurological disorders. Further, we highlight data that leads us to propose IL-1, as the missing mechanistic link between a potential beneficial inflammatory response and detrimental glutamate excitotoxicity. [source]


    Astrocyte expression of a dominant-negative interferon-, receptor

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2005
    Claudia Hindinger
    Abstract Interferon-, (IFN-,) is a major proinflammatory cytokine, and binding to its nearly ubiquitous receptor induces a wide variety of biological functions. To explore the role(s) of IFN-, signaling in astrocytes, transgenic mice (GFAP/IFN-,R1,IC) expressing a dominant-negative IFN-, receptor alpha chain under control of the astrocyte-specific glial fibrillary acid protein (GFAP) promoter were generated. Transgenic mice developed normally, had normal astrocyte numbers and distribution, and exhibited no clinically overt phenotype. Transgene mRNA expression was detected only in the CNS, and the transgene-encoded IFN-, receptor 1 colocalized with GFAP, which is consistent with astrocyte expression. Astrocytes from transgenic mice exhibited reduced IFN-,-induced signaling as measured by major histocompatibility class II induction. Neither CNS inflammation nor perforin-mediated clearance of a neurotropic mouse hepatitis virus from astrocytes was impaired following infection. Transgenic mice with impaired astrocyte responsiveness to IFN-, provide a model for studying the selective astrocyte-dependent effects of this critical cytokine in CNS immunopathology. © 2005 Wiley-Liss, Inc. [source]


    Immune-expression of HSP27 and IL-10 in recurrent aphthous ulceration

    JOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 8 2008
    Nelson T. Miyamoto Jr
    Background:, Recently, abnormal cellular immune response has been considered responsible for the oral lesion in the recurrent aphthous ulceration (RAU). For reasons not yet defined, antigens of the oral microbiota would trigger abnormal Th1 immune response against epithelial cells. On the other hand, studies have demonstrated that heat shock proteins (HSP) can block the production of proinflammatory cytokine through inhibition of NF-,B and mitogen-activated protein kinase pathways or activate anti-inflammatory cytokines and therefore control the magnitude of the immune response. HSP27 has been considered a powerful inductor of IL-10, a major inhibitor of Th1 response. Methods:, Using immunohistochemistry, we studied the expression and location of HSP27 and IL-10 in ulcerated lesions clinically diagnosed as RAU (n = 27) and to compare it with that of oral clinically normal mucosa (CT; n = 6) and of other inflammatory chronic diseases such as oral fibrous inflammatory hyperplasia (FIH; n = 18), Crohn's disease (CD; n = 10) and ulcerative colitis (UC; n = 9). Results:, A lower proportion of HSP27-positive epithelial cells in RAU and CD were observed when compared with CT and FIH (P < 0.001**; P = 0.013**). A lower proportion of IL-10-positive interstitial cells in RAU was observed when compared with FIH, UC, CT and CD (P < 0.001**; P < 0.001**; P < 0.001**; P = 0.034*). Conclusion:, Altogether the data suggest that a reduced cellular expression of HSP27 and IL-10 in RAU might be related with the aetiopathogenesis of the ulcerated oral lesions. [source]


    Interleukin-1 modulates periprosthetic tissue formation in an intramedullary model of particle-induced inflammation

    JOURNAL OF ORTHOPAEDIC RESEARCH, Issue 3 2005
    Noah J. Epstein
    Abstract Interleukin-1 (IL-1) is a proinflammatory cytokine that has been implicated in wear-debris associated total joint replacement failure. We hypothesized that the absence of the IL-1 type-1 receptor would mitigate the inflammatory response to titanium particles and decrease periprosthetic inflammatory tissue in a murine intramedullary rod model. Methods: An intramedullary rod with and without commercially pure titanium particles was placed in the femora of 24 wild type mice (WT) and 24 mice lacking a functional type-1 receptor to IL-1. Femora were analyzed histologically and by ELISA of organ culture explant supernatants. Results: The presence of titanium particles in WT mice stimulated increased expression of interleukin-6 (IL-6) and macrophage chemoattractant protein-1 (MCP-1) relative to rod only controls. In contrast, IL-6 and MCP-1 expression were diminished in IL-lrl-KO mice exposed to titanium particles. Additionally, the formation of a periprosthetic fibro-inflammatory membrane in IL-lrl-KO mice was blunted at 2 weeks when compared to that in wild-type mice. Inflammatory changes and the quality of periprosthetic bone of IL-lrl-KO mice was similar to WT mice in response to titanium particles. Conclusions: These results implicate IL-1 as an important modulator in the local inflammatory response to intramedullary titanium particles. MCP-1 appears to be significantly modulated in IL-lrl-KO mice in response to titanium particles. This may be responsible, in part, for the diminished periprosthetic membrane observed in IL-lrl-KO mice at 2 weeks. Expansion of this murine model of intramedullary particle-induced inflammation to other gene targets may contribute to a more mechanistic understanding of wear-debris associated prosthesis failure. © 2004 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved. [source]