Probe Drug (probe + drug)

Distribution by Scientific Domains


Selected Abstracts


Plasma profile and pharmacokinetics of dextromethorphan after intravenous and oral administration in healthy dogs

JOURNAL OF VETERINARY PHARMACOLOGY & THERAPEUTICS, Issue 5 2004
B. KuKanich
Dextromethorphan is an N -methyl- d -aspartate (NMDA) noncompetitive antagonist which has been used as an antitussive, analgesic adjunct, probe drug, experimentally to attenuate acute opiate and ethanol withdrawal, and as an anticonvulsant. A metabolite of dextromethorphan, dextrorphan, has been shown to behave pharmacodynamically in a similar manner to dextromethorphan. The pharmacokinetics of dextromethorphan were examined in six healthy dogs following intravenous (2.2 mg/kg) and oral (5 mg/kg) administration in a randomized crossover design. Dextromethorphan behaved in a similar manner to other NMDA antagonists upon injection causing muscle rigidity, ataxia to recumbency, sedation, urination, and ptyalism which resolved within 90 min. One dog repeatedly vomited upon oral administration and was excluded from oral analysis. Mean ± SD values for half-life, apparent volume of distribution, and clearance after i.v. administration were 2.0 ±0.6 h, 5.1 ± 2.6 L/kg, and 33.8 ± 16.5 mL/min/kg. Oral bioavailability was 11% as calculated from naïve pooled data. Free dextrorphan was not detected in any plasma sample, however enzymatic treatment of plasma with glucuronidase released both dextromethorphan and dextrorphan indicating that conjugation is a metabolic route. The short half-life, rapid clearance, and poor bioavailability of dextromethorphan limit its potential use as a chronic orally administered therapeutic. [source]


Effects of Angelicae tenuissima radix, Angelicae dahuricae radix and Scutellariae radix Extracts on Cytochrome P450 Activities in Healthy Volunteers

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 4 2009
SoJeong Yi
A total of 24 healthy male volunteers were assigned to one of three parallel herbal treatment groups, each consisting of eight volunteers. A cocktail of probe drugs for CYP enzymes was orally administered before and after multiple administrations of herbal medicines, three times a day for 13 days. Probe drugs used to measure CYP activities were caffeine (CYP1A2), losartan (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), chlorzoxazone (CYP2E1) and midazolam (CYP3A4). The probe drugs and their metabolites were quantified in plasma or urine using HPLC or LC-MS/MS. Changes in each CYP activity was evaluated by metabolic ratio of the probe drug (concentration ratio of metabolite to parent form at reference time point) following the herbal medication period, compared to the baseline values. A. dahuricae radix significantly decreased CYP1A2 activity to 10% of baseline activity (95% CI: 0.05,0.21). S. radix also showed significant changes in CYP2C9 and CYP2E1 activities. Compared to baseline values, the metabolic activities of losartan were decreased to 71% (0.54,0.94). In addition, S. radix showed a 1.42-fold (1.03,1.97) increase in chlorzoxazone metabolic activity. However, CYP activities were not meaningfully influenced by A. tenuissima radix. Changes in certain CYP activities were observed after the administration of S. radix and A. dahuricae radix in healthy volunteers. Therefore, herbal medicines containing S. radix or A. dahuricae radix are candidates for further evaluation of clinically significant CYP-mediated herb-drug interactions in human beings. [source]


Assessment of CYP1A2 Activity in Clinical Practice: Why, How, and When?

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 3 2005
Mirko S. Faber
CYP1A2 activity shows both pronounced intra- and interindividual variability, which is, among other factors, related to smoking causing enzyme induction, to drug intake and to dietary factors which may result in induction or inhibition. In contrast to these exogenous factors, genetic influences on enzyme activity seem to be less pronounced. Therefore, phenotyping of CYP1A2, i.e. the determination of the actual activity of the enzyme in vivo, represents a useful approach both for scientific and clinical applications. CYP1A2 is almost exclusively expressed in the liver. Since liver tissue cannot be obtained for direct phenotyping, a probe drug which is metabolized by CYP1A2 has to be given. Proposed probe drugs include caffeine, theophylline, and melatonin. Caffeine is most often used because of the predominating role of CYP1A2 in its overall metabolism and the excellent tolerability. Various urinary, plasma, saliva, and breath based CYP1A2 caffeine metrics have been applied. While caffeine clearance is considered as the gold standard, the salivary or plasma ratio of paraxanthine to caffeine in a sample taken approximately 6 hr after a defined dose of caffeine is a more convenient, less expensive but also fully validated CYP1A2 phenotyping metric. CYP1A2 phenotyping is applied frequently in epidemiologic and drug-drug interaction studies, but its clinical use and usefulness remains to be established. [source]


Pharmacokinetics of intravenous and oral midazolam in plasma and saliva in humans: usefulness of saliva as matrix for CYP3A phenotyping

BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 4 2008
Bettina Link
WHAT IS ALREADY KNOWN ABOUT THE SUBJECT , Midazolam is a frequently used probe drug for CYP3A phenotyping in plasma. Midazolam and its hydroxy-metabolites can be detected in saliva. WHAT THIS STUDY ADDS , The concentrations of midazolam and its hydroxy-metabolites are much lower in saliva than in plasma, but the midazolam concentrations in both matrices show a significant linear correlation. , Saliva appears to be a suitable matrix for CYP3A phenotyping with midazolam, but very sensitive methods are required due to the low concentrations of midazolam and its hydroxy-metabolites. AIMS To compare midazolam kinetics between plasma and saliva and to find out whether saliva is suitable for CYP3A phenotyping. METHODS This was a two way cross-over study in eight subjects treated with 2 mg midazolam IV or 7.5 mg orally under basal conditions and after CYP3A induction with rifampicin. RESULTS Under basal conditions and IV administration, midazolam and 1,-hydroxymidazolam (plasma, saliva), 4-hydroxymidazolam and 1,-hydroxymidazolam-glucuronide (plasma) were detectable. After rifampicin, the AUC of midazolam [mean differences plasma 53.7 (95% CI 4.6, 102.9) and saliva 0.83 (95% CI 0.52, 1.14) ng ml,1 h] and 1,-hydroxymidazolam [mean difference plasma 11.8 (95% CI 7.9 , 15.7) ng ml,1 h] had decreased significantly. There was a significant correlation between the midazolam concentrations in plasma and saliva (basal conditions: r = 0.864, P < 0.0001; after rifampicin: r = 0.842, P < 0.0001). After oral administration and basal conditions, midazolam, 1,-hydroxymidazolam and 4-hydroxymidazolam were detectable in plasma and saliva. After treatment with rifampicin, the AUC of midazolam [mean difference plasma 104.5 (95% CI 74.1, 134.9) ng ml,1 h] and 1,-hydroxymidazolam [mean differences plasma 51.9 (95% CI 34.8, 69.1) and saliva 2.3 (95% CI 1.9, 2.7) ng ml,1 h] had decreased significantly. The parameters separating best between basal conditions and post-rifampicin were: (1,-hydroxymidazolam + 1,-hydroxymidazolam-glucuronide)/midazolam at 20,30 min (plasma) and the AUC of midazolam (saliva) after IV, and the AUC of midazolam (plasma) and of 1,-hydroxymidazolam (plasma and saliva) after oral administration. CONCLUSIONS Saliva appears to be a suitable matrix for non-invasive CYP3A phenotyping using midazolam as a probe drug, but sensitive analytical methods are required. [source]


Effects of Angelicae tenuissima radix, Angelicae dahuricae radix and Scutellariae radix Extracts on Cytochrome P450 Activities in Healthy Volunteers

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 4 2009
SoJeong Yi
A total of 24 healthy male volunteers were assigned to one of three parallel herbal treatment groups, each consisting of eight volunteers. A cocktail of probe drugs for CYP enzymes was orally administered before and after multiple administrations of herbal medicines, three times a day for 13 days. Probe drugs used to measure CYP activities were caffeine (CYP1A2), losartan (CYP2C9), omeprazole (CYP2C19), dextromethorphan (CYP2D6), chlorzoxazone (CYP2E1) and midazolam (CYP3A4). The probe drugs and their metabolites were quantified in plasma or urine using HPLC or LC-MS/MS. Changes in each CYP activity was evaluated by metabolic ratio of the probe drug (concentration ratio of metabolite to parent form at reference time point) following the herbal medication period, compared to the baseline values. A. dahuricae radix significantly decreased CYP1A2 activity to 10% of baseline activity (95% CI: 0.05,0.21). S. radix also showed significant changes in CYP2C9 and CYP2E1 activities. Compared to baseline values, the metabolic activities of losartan were decreased to 71% (0.54,0.94). In addition, S. radix showed a 1.42-fold (1.03,1.97) increase in chlorzoxazone metabolic activity. However, CYP activities were not meaningfully influenced by A. tenuissima radix. Changes in certain CYP activities were observed after the administration of S. radix and A. dahuricae radix in healthy volunteers. Therefore, herbal medicines containing S. radix or A. dahuricae radix are candidates for further evaluation of clinically significant CYP-mediated herb-drug interactions in human beings. [source]


Assessment of CYP1A2 Activity in Clinical Practice: Why, How, and When?

BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 3 2005
Mirko S. Faber
CYP1A2 activity shows both pronounced intra- and interindividual variability, which is, among other factors, related to smoking causing enzyme induction, to drug intake and to dietary factors which may result in induction or inhibition. In contrast to these exogenous factors, genetic influences on enzyme activity seem to be less pronounced. Therefore, phenotyping of CYP1A2, i.e. the determination of the actual activity of the enzyme in vivo, represents a useful approach both for scientific and clinical applications. CYP1A2 is almost exclusively expressed in the liver. Since liver tissue cannot be obtained for direct phenotyping, a probe drug which is metabolized by CYP1A2 has to be given. Proposed probe drugs include caffeine, theophylline, and melatonin. Caffeine is most often used because of the predominating role of CYP1A2 in its overall metabolism and the excellent tolerability. Various urinary, plasma, saliva, and breath based CYP1A2 caffeine metrics have been applied. While caffeine clearance is considered as the gold standard, the salivary or plasma ratio of paraxanthine to caffeine in a sample taken approximately 6 hr after a defined dose of caffeine is a more convenient, less expensive but also fully validated CYP1A2 phenotyping metric. CYP1A2 phenotyping is applied frequently in epidemiologic and drug-drug interaction studies, but its clinical use and usefulness remains to be established. [source]


Pharmacokinetic assessment of a five-probe cocktail for CYPs 1A2, 2C9, 2C19, 2D6 and 3A

BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, Issue 6 2009
Sandrine Turpault
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT , Numerous cocktails using concurrent administration of several cytochrome P450 (CYP) isoform-selective probe drugs have been reported to investigate drug,drug interactions in vivo. , This approach has several advantages: characterize the inhibitory or induction potential of compounds in development toward the CYP enzymes identified in vitro in an in vivo situation, assess several enzymes in the same trial, and have complete in vivo information about potential CYP-based drug interactions. WHAT THIS STUDY ADDS , This study describes a new cocktail containing five probe drugs that has never been published. , This cocktail can be used to test the effects of a new chemical entity on multiple CYP isoforms in a single clinical study: CYP1A2 (caffeine), CYP2C9 (warfarin), CYP2C19 (omeprazole), CYP2D6 (metoprolol), and CYP3A (midazolam) and was designed to overcome potential liabilities of other reported cocktails. AIMS To assess the pharmacokinetics (PK) of selective substrates of CYP1A2 (caffeine), CYP2C9 (S-warfarin), CYP2C19 (omeprazole), CYP2D6 (metoprolol) and CYP3A (midazolam) when administered orally and concurrently as a cocktail relative to the drugs administered alone. METHODS This was an open-label, single-dose, randomized, six-treatment six-period six-sequence William's design study with a wash-out of 7 or 14 days. Thirty healthy male subjects received 100 mg caffeine, 100 mg metoprolol, 0.03 mg kg,1 midazolam, 20 mg omeprazole and 10 mg warfarin individually and in combination (cocktail). Poor metabolizers of CYP2C9, 2C19 and 2D6 were excluded. Plasma samples were obtained up to 48 h for caffeine, metoprolol and omeprazole, 12 h for midazolam, 312 h for warfarin and the cocktail. Three different validated liquid chromatography tandem mass spectrometry methods were used. Noncompartmental PK parameters were calculated. Log-transformed Cmax, AUClast and AUC for each analyte were analysed with a linear mixed effects model with fixed term for treatment, sequence and period, and random term for subject within sequence. Point estimates (90% CI) for treatment ratios (individual/cocktail) were computed for each analyte Cmax, AUClast and AUC. RESULTS There was no PK interaction between the probe drugs when administered in combination as a cocktail, relative to the probes administered alone, as the 90% CI of the PK parameters was within the prespecified bioequivalence limits of 0.80, 1.25. CONCLUSION The lack of interaction between probes indicates that this cocktail could be used to evaluate the potential for multiple drug,drug interactions in vivo. [source]