Home About us Contact | |||
Principal Direction (principal + direction)
Selected AbstractsSpecificity of muscle action after anterior cruciate ligament injuryJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 6 2003Glenn N. Williams Abstract Neuromuscular control is believed to be a critical factor in dynamic knee stability. The purpose of this study was to evaluate voluntary muscle control in anterior cruciate ligament deficient (ACL-D) and uninjured people. Twenty athletes of similar age participated in this study. Subjects performed a target-matching protocol that required them to produce isometric moments about the knee with fine control in flexion, extension, varus, and valgus (i.e., loads were generated in the plane perpendicular to the long axis of the shank). Electromyographic data were collected from 10 muscles that span the knee. A specificity index was calculated for each muscle to describe how fine-tuned (specific) its muscle activity pattern was with respect to its principal direction of action in the load plane. Diminished specificity of muscle action was observed in 8 of 10 muscles in the ACL-D subjects' involved knees when compared with the activity patterns from their uninvolved knees and those from the uninjured subjects' knees. The vastus lateralis muscle was especially affected. Increased and more global co-contraction was also observed in the ACL-D limbs. The alterations in muscle firing patterns observed in this study are consistent with diminished neuromuscular control. © 2003 Orthopaedic Research Society. Published by Elsevier Science Ltd. All rights reserved. [source] In vivo mapping of the fast and slow diffusion tensors in human brainMAGNETIC RESONANCE IN MEDICINE, Issue 4 2002Chris A. Clark Abstract Recent studies have shown that the diffusional signal decay in human brain is non-monoexponential and may be described in terms of compartmentalized water fractions. Diffusion tensor imaging (DTI), which provides information about tissue structure and orientation, typically uses b values up to 1000 s mm,2 so that the signal is dominated by the fast diffusing fraction. In this study b factors up to 3500 s mm,2 are utilized, allowing the diffusion tensor properties of the more slowly diffusing fraction to be mapped for the first time. The mean diffusivity (MD) of the slow diffusion tensor was found to exhibit strong white/gray matter (WM/GM) contrast. Maps depicting the principal direction of the slow tensor indicated alignment with the fast tensor and the known orientation of the WM pathways. Magn Reson Med 47:623,628, 2002. © 2002 Wiley-Liss, Inc. [source] Maslovian Lagrangian surfaces of constant curvature in complex projective or complex hyperbolic planesMATHEMATISCHE NACHRICHTEN, Issue 11 2005Bang-Yen Chen Abstract A Lagrangian submanifold is called Maslovian if its mean curvature vector H is nowhere zero and its Maslov vector field JH is a principal direction of AH . In this article we classify Maslovian Lagrangian surfaces of constant curvature in complex projective plane CP2 as well as in complex hyperbolic plane CH2. We prove that there exist 14 families of Maslovian Lagrangian surfaces of constant curvature in CP2 and 41 families in CH2. All of the Lagrangian surfaces of constant curvature obtained from these families admit a unit length Killing vector field whose integral curves are geodesics of the Lagrangian surfaces. Conversely, locally (in a neighborhood of each point belonging to an open dense subset) every Maslovian Lagrangian surface of constant curvature in CP2 or in CH2 is a surface obtained from these 55 families. As an immediate by-product, we provide new methods to construct explicitly many new examples of Lagrangian surfaces of constant curvature in complex projective and complex hyperbolic planes which admit a unit length Killing vector field. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Porosity of human mandibular condylar boneJOURNAL OF ANATOMY, Issue 3 2007G. A. P. Renders Abstract Quantification of porosity and degree of mineralization of bone facilitates a better understanding of the possible effects of adaptive bone remodelling and the possible consequences for its mechanical properties. The present study set out first to give a three-dimensional description of the cortical canalicular network in the human mandibular condyle, in order to obtain more information about the principal directions of stresses and strains during loading. Our second aim was to determine whether the amount of remodelling was larger in the trabecular bone than in cortical bone of the condyle and to establish whether the variation in the amount of remodelling was related to the surface area of the cortical canals and trabeculae. We hypothesized that there were differences in porosity and orientation of cortical canals between various cortical regions. In addition, as greater cortical and trabecular porosities are likely to coincide with a greater surface area of cortical canals and trabeculae available for osteoblastic and osteoclastic activity, we hypothesized that this surface area would be inversely proportional to the degree of mineralization of cortical and trabecular bone, respectively. Micro-computed tomography was used to quantify porosity and mineralization in cortical and trabecular bone of ten human mandibular condyles. The cortical canals in the subchondral cortex of the condyle were orientated in the mediolateral direction, and in the anterior and posterior cortex in the superoinferior direction. Cortical porosity (average 3.5%) did not differ significantly between the cortical regions. It correlated significantly with the diameter and number of cortical canals, but not with cortical degree of mineralization. In trabecular bone (average porosity 79.3%) there was a significant negative correlation between surface area of the trabeculae and degree of mineralization; such a correlation was not found between the surface area of the cortical canals and the degree of mineralization of cortical bone. No relationship between trabecular and cortical porosity, nor between trabecular degree of mineralization and cortical degree of mineralization was found, suggesting that adaptive remodelling is independent and different between trabecular and cortical bone. We conclude (1) that the principal directions of stresses and strains are presumably directed mediolaterally in the subchondral cortex and superoinferiorly in the anterior and posterior cortex, (2) that the amount of remodelling is larger in the trabecular than in the cortical bone of the mandibular condyle; in trabecular bone variation in the amount of remodelling is related to the available surface area of the trabeculae. [source] Resistance to tearing of calf and ostrich pericardium: Influence of the type of suture material and the direction of the suture lineJOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 2 2004José María García Páez Abstract The tearing of the valve leaflet of a cardiac bioprosthesis can cause early failure of this device, which is employed to replace a diseased native valve. This report involves the study of the behavior of 312 tissue samples (152 of calf pericardium and 160 of ostrich pericardium) treated with glutaraldehyde and subsequently subjected to tear testing. The samples were cut in the two principal directions: longitudinally, or root to apex, and transversely. They included a series of control samples that were left unsutured, and the remaining samples were repaired with the use of two different suture techniques: a running suture in the direction of the load and a telescoping suture perpendicular to the load. Four commercially available suture materials were employed: Pronova®, nylon, Gore-Tex®, or silk. The unsutured control samples of both types of pericardium exhibited a similar anisotropic behavior in the tear test. The mean resistance to tearing of the calf pericardium was 24.29 kN m in samples cut longitudinally and 34.78 kN m in those cut transversely (p = .03); the values were 28.08 kN m and 37.12 kN m (p = .002), respectively, in ostrich pericardium. The series repaired with the telescoping suture always exhibited greater resistance to tearing, with values that ranged between 44.34 and 64.27 kN for the samples of calf pericardium and from 41.65 to 47.65 kN for those obtained from ostrich. These assays confirm the anisotropic behavior of calf and ostrich pericardium treated with glutaraldehyde when subjected to tear testing, as well as the loss of this behavior in ostrich pericardium after suturing. Suturing techniques, such as the telescoping model, that provide a greater resistance to tearing should be studied for use in the design of the valve leaflets of cardiac bioprostheses made of biological materials. © 2004 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 69B: 125,134, 2004 [source] |