Primary Culture System (primary + culture_system)

Distribution by Scientific Domains


Selected Abstracts


Murine mesenchymal stem cells isolated by low density primary culture system

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2006
Mohamadreza Baghaban Eslaminejad
Murine mesenchymal stem cells (mMSC) and the difficult task of isolation and purification of them have been the subject of rather extensive investigation. The present study sought to isolate these cells from two different mouse strains, one outbred and the other inbred, primarily through a relatively simple but novel approach, the most important feature of which was the low density primary culture of bone marrow cells. For this purpose, mononuclear cells from either NMRI or BALB/c bone marrow were plated at about 500 cells per well of 24-well plates and incubated for 7 days. At this point, the fibroblastic clones that had emerged were pooled together and expanded through several subcultures. To investigate the mesenchymal nature, we differentiated the cells into the osteoblastic, chondrocytic and adipocytic lineages in different subcultures up to passage 10. According to the results, 1 week after culture initiation, several clones each comprising several fibroblastic cells appeared in each plate. The cells from different passages were capable of differentiating into corresponding skeletal tissues. In the present investigation, the best culture condition for maximum proliferation and also the expression of certain surface marker on isolated cells were examined. In this term the two murine strains showed some differences. [source]


Nerve growth factor attenuates proliferation of astrocytes via the p75 neurotrophin receptor

GLIA, Issue 13 2009
Andrea B. Cragnolini
Abstract The p75 neurotrophin receptor has been implicated in the regulation of multiple cellular functions that differ depending on the cell context. We have observed that p75NTR is strongly induced on astrocytes as well as neurons in the hippocampal CA3 region after seizures; however, the function of this receptor on these glial cells has not been defined. We have employed a primary culture system to investigate the effects of neurotrophins on astrocytes. Treatment of hippocampal astrocytes with nerve growth factor (NGF) caused a reduction in cell number, but did not elicit an apoptotic response, in contrast to hippocampal neurons. Instead, activation of p75NTR by NGF attenuated proliferation induced by mitogens such as EGF or serum. These studies demonstrate the cell type specificity of neurotrophin functions in the brain. © 2009 Wiley-Liss, Inc. [source]


In-vitro nasal drug delivery studies: comparison of derivatised, fibrillar and polymerised collagen matrix-based human nasal primary culture systems for nasal drug delivery studies

JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 11 2001
Remigius Uchenna Agu
The aim of this study was to establish a collagen matrix-based nasal primary culture system for drug delivery studies. Nasal epithelial cells were cultured on derivatised (Cellagen membrane CD-24), polymerised (Vitrogen gel) and fibrillar (Vitrogen film) collagen substrata. Cell morphology was assessed by microscopy. The cells were further characterised by measurement of ciliary beat frequency (CBF), transepithelial resistance (TER), permeation of sodium fluorescein, mitochondrial dehydrogenase (MDH) activity and lactate dehydrogenase (LDH) release upon cell exposure to sodium tauro-24, 25 dihydrofusidate (STDHF). Among the three collagen substrata investigated, the best epithelial differentiated phenotype (monolayer with columnar/cuboidal morphology) occurred in cells grown on Cellagen membrane CD-24 between day 4 and day 11. Cell culture reproducibility was better with Cellagen membrane CD-24 (90%) in comparison with Vitrogen gel (70%) and Vitrogen film (< 10%). TER was higher in cells grown on Vitrogen gel than on Cellagen membrane CD-24 and Vitrogen film. The apparent permeability coefficient (Papp × 10,7 cm s,1) of sodium fluorescein in these conditions was 0.45 ± 0.08 (Vitrogen gel) and 1.91 ± 0.00 (Cellagen membrane CD-24). Except for LDH release, CBF and cell viability were comparable for all the substrata. Based on MDH activity, LDH release, CBF, TER and permeation studies, Cellagen membrane CD-24- and Vitrogen gel-based cells were concluded to be functionally suitable for in-vitro nasal drug studies. Vitrogen film-based cultures may be limited to metabolism and cilio-toxicity studies. [source]