Home About us Contact | |||
Primary Cell Wall (primary + cell_wall)
Selected AbstractsExtracellular cross-linking of maize arabinoxylans by oxidation of feruloyl esters to form oligoferuloyl esters and ether-like bondsTHE PLANT JOURNAL, Issue 4 2009Sally J. Burr Summary Primary cell walls of grasses and cereals contain arabinoxylans with esterified ferulate side chains, which are proposed to cross-link the polysaccharides during maturation by undergoing oxidative coupling. However, the mechanisms and control of arabinoxylan cross-linking in vivo are unclear. Non-lignifying maize (Zea mays L.) cell cultures were incubated with l- [1- 3H]arabinose or (E)-[U- 14C]cinnamate (radiolabelling the pentosyl and feruloyl groups of endogenous arabinoxylans, respectively), or with exogenous feruloyl-[3H]arabinoxylans. The cross-linking rate of soluble extracellular arabinoxylans, monitored on Sepharose CL-2B, peaked suddenly and transiently, typically at ,9 days after subculture. This peak was not associated with appreciable changes in peroxidase activity, and was probably governed by fluctuations in H2O2 and/or inhibitors. De-esterified arabinoxylans failed to cross-link, supporting a role for the feruloyl ester groups. The cross-links were stable in vivo. Some of them also withstood mild alkaline conditions, indicating that they were not (only) based on ester bonds; however, most were cleaved by 6 m NaOH, which is a property of p- hydroxybenzyl,sugar ether bonds. Cross-linking of [14C]feruloyl-arabinoxylans also occurred in vitro, in the presence of endogenous peroxidases plus exogenous H2O2. During cross-linking, the feruloyl groups were oxidized, as shown by ultraviolet spectra and thin-layer chromatography. Esterified diferulates were minor oxidation products; major products were: (i) esterified oligoferulates, released by treatment with mild alkali; and (ii) phenolic components attached to polysaccharides via relatively alkali-stable (ether-like) bonds. Thus, feruloyl esters participate in polysaccharide cross-linking, but mainly by oligomerization rather than by dimerization. We propose that, after the oxidative coupling, strong p- hydroxybenzyl,polysaccharide ether bonds are formed via quinone-methide intermediates. [source] RELATIONSHIPS BETWEEN PRIMARY PLANT CELL WALL ARCHITECTURE AND MECHANICAL PROPERTIES FOR ONION BULB SCALE EPIDERMAL CELLSJOURNAL OF TEXTURE STUDIES, Issue 6 2004DAVID G. HEPWORTH ABSTRACT This article investigates onion epidermal tissue (Allium cepa) using a combination of mechanical testing, microscopy and modeling and relates tissue mechanical properties to the known structure of the cell walls. Onion epidermal tissue has a simple, regular structure of elongated cells, which have been used to enable the contributions to mechanical properties of cell walls and of higher order structures to be separated and analyzed. Two models of wall behavior were used to explore how Poisson's ratio of cell walls parallel to the plane of the epidermal surface may vary with applied strain. In the first model, cellulose microfibrils can be reorientated in an unrestricted way with the result that the cell wall volume decreases. In the second model the volume of the cell wall remains constant, which controls the reorientation of microfibrils, hence the Poisson's ratio. Measurements made from uniaxially stretched cells show that the data most closely fits model I, therefore, it is concluded that the bulk of the matrix has little influence on the observed mechanical properties (at a test rate of 1 mm/min), allowing cellulose microfibrils to reorient through the matrix in an unrestricted way during uniaxial tests. In its mechanical attributes the primary cell wall resembles more a knitted cloth than a semisolid composite material. When biaxial stretching is applied to tissue, so that there is no re-orientation of microfibrils, the cell wall material is still able to reach surprisingly large elastic strains of up to 12.5% and no plastic deformation was recorded. Current theory suggests that cellulose microfibrils can stretch elastically by a maximum of 7%, therefore further work is required to identify mechanisms that could account for the extra elastic strain. [source] The spatial pattern of air seeding thresholds in mature sugar maple treesPLANT CELL & ENVIRONMENT, Issue 9 2005BRENDAN CHOAT ABSTRACT Air seeding threshold (Pa) of xylem vessels from current year growth rings were measured along the vertical axis of mature sugar maple trees (Acer saccharum Marsh.), with sampling points in primary leaf veins, petioles, 1-, 3-, and 7-year-old branches, large branches, the trunk and roots. The air seeding threshold was taken as the pressure required to force nitrogen gas through intervessel pit membranes. Although all measurements were made on wood produced in the same year, Pa varied between different regions of A. saccharum, with distal organs such as leaves and petioles having lower Pa than basal regions. Mean (SE) Pa ranged from 1.0 (± 0.1) MPa in primary leaf veins to 4.8 (± 0.1) MPa in the main trunk. Roots exhibited a Pa of 2.8 (± 0.2) MPa, lower than all other regions of the tree except leaf veins and petioles. Mean xylem vessel diameter increased basipetally, with the widest vessels occurring in the trunk and roots. Within the shoot, wider vessels had greater air seeding thresholds, contrasting with trends previously reported. However, further experimentation revealed that differences in Pa between regions of the stem were driven by the presence of primary xylem conduits, rather than differences in vessel diameter. In 1-year-old branches, Pa was significantly lower in primary xylem vessels than in adjacent secondary xylem vessels. This explained the lower values of Pa measured in petioles and leaf veins, which possessed a greater ratio of primary xylem to secondary xylem than other regions. The difference in Pa between primary and secondary xylem was attributed to the greater area of primary cell wall (pit membrane) exposed in primary xylem conduits with helical or annular thickening. [source] A subtilisin-like serine protease essential for mucilage release from Arabidopsis seed coatsTHE PLANT JOURNAL, Issue 3 2008Carsten Rautengarten Summary During Arabidopsis seed development large quantities of mucilage, composed of pectins, are deposited into the apoplast underneath the outer wall of the seed coat. Upon imbibition of mature seeds, the stored mucilage expands through hydration and breaks the outer cell wall that encapsulates the whole seed. Mutant seeds carrying loss-of-function alleles of AtSBT1.7 that encodes one of 56 Arabidopsis thaliana subtilisin-like serine proteases (subtilases) do not release mucilage upon hydration. Microscopic analysis of the mutant seed coat revealed no visible structural differences compared with wild-type seeds. Weakening of the outer primary wall using cation chelators triggered mucilage release from the seed coats of mutants. However, in contrast to mature wild-type seeds, the mutant's outer cell walls did not rupture at the radial walls of the seed coat epidermal cells, but instead opened at the chalazal end of the seed, and were released in one piece. In atsbt1.7, the total rhamnose and galacturonic acid contents, representing the backbone of mucilage, remained unchanged compared with wild-type seeds. Thus, extrusion and solubility, but not the initial deposition of mucilage, are affected in atsbt1.7 mutants. AtSBT1.7 is localized in the developing seed coat, indicating a role in testa development or maturation. The altered mode of rupture of the outer seed coat wall and mucilage release indicate that AtSBT1.7 triggers the accumulation, and/or activation, of cell wall modifying enzymes necessary either for the loosening of the outer primary cell wall, or to facilitate swelling of the mucilage, as indicated by elevated pectin methylesterase activity in developing atsbt1.7 mutant seeds. [source] Cell wall composition of vascular and parenchyma tissues in broccoli stemsJOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 13 2003S Müller Abstract Broccoli stems can become tough and stringy owing to excessive development of the vascular ring. Thickened cell walls from the vascular ring were isolated and their composition was determined. They were derived principally from anatomically recognisable xylem vessels, fibres and tracheids but contained an assemblage of polysaccharides typical of primary cell walls. Their pectin content was particularly high and they contained only 6% lignin as estimated by solid state 13C NMR spectroscopy. They did not differ markedly in composition from parenchyma cell walls within the same stems. Thus, despite their thickness and anatomical appearance, these cell walls resembled the walls of non-woody cells in their polymer composition. Copyright © 2003 Society of Chemical Industry [source] Organ-specific, developmental, hormonal and stress regulation of expression of putative pectate lyase genes in ArabidopsisNEW PHYTOLOGIST, Issue 3 2007Saiprasad Goud Palusa Summary ,,Pectate lyases catalyse the eliminative cleavage of de-esterified homogalacturonan in pectin, a major component of the primary cell walls in higher plants. In the completed genome of Arabidopsis, there are 26 genes (AtPLLs) that encode pectate lyase-like proteins. ,,Here, we analysed the expression pattern of all AtPLLs in different organs, at different stages of seedling development and in response to various hormones and stresses. ,,The expression of PLLs varied considerably in different organs, with no expression of some PLLs in vegetative organs. Interestingly, all PLL genes are expressed in flowers. Several PLLs are expressed highly in pollen, suggesting a role for these in pollen development and/or function. Analysis of expression of all PLL genes in seedlings treated with hormones, abiotic stresses and elicitors of defense responses revealed significant changes in the expression of some PLLs without affecting the other PLLs. The stability of transcripts of PLLs varied considerably among different genes. ,,Our results indicate a complex regulation of expression of PLLs and involvement of PLLs in some of the hormonal and stress responses. [source] |