Previtellogenic Oocytes (previtellogenic + oocyte)

Distribution by Scientific Domains


Selected Abstracts


Degeneration of germ line cells in amphibian ovary

ACTA ZOOLOGICA, Issue 3 2010
Maria Ogielska
Abstract Ogielska, M., Rozenblut, B., Augusty,ska, R., Kotusz, A. 2010. Degeneration of germ line cells in amphibian ovary. ,Acta Zoologica (Stockholm) 91: 319,327 We studied the morphology of degenerating ovarian follicles in juvenile and adult frogs Rana temporaria, Rana lessonae and Rana ridibunda. Degeneration of primordial germ cells was never observed and was extremely rare in oogonia and early oocytes in a cyst phase in juveniles. Previtellogenic oocytes were rarely affected. Three main types of atresia were identified. In type I (subdivided into stages A,D), vitellogenic oocytes are digested by proliferating follicle cells that hypertrophy and become phagocytic. A , germinal vesicle shrinks, nucleoli fuse, oocyte envelope interrupts, and follicular cells hypertrophy; B , follicular cells multiply and invade the oocyte; C , entire vesicle is filled by phagocytic cells; D , degenerating phagocytes accumulate black pigment. Type II is rare and resembles breakdown of follicles and release of ooplasm. In type III, observed in previtellogenic and early vitellogenic oocytes, ooplasm and germinal vesicle shrink, follicle cells do not invade the vesicle, and condensed ooplasm becomes fragmented. The residual oogonia in adult ovaries (germ patches) multiply, but soon degenerate. [source]


Gonadal structure of the serial-sex changing gobiid fish Trimma okinawae

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 1 2005
Yasuhisa Kobayashi
In order to obtain basic information about the role played by endogenous sex hormones in bringing about sex changes in the serial-sex changing gobiid fish Trimma okinawae, the gonadal structure of male and female phases were observed histologically. Steroid-producing cells (SPC; Leydig cells in a testis) were observed ultrastructurally in the ovaries and testes of both female-phase and male-phase fish. In addition, gonadal expression of P450 cholesterol side-chain-cleavage (scc) was examined immunohistochemically. Gonads of fish in female and male phases were observed to have both ovaries and testes simultaneously. Female-phase fish had matured with many developed vitellogenic oocytes, while male-phase individuals had immature ovaries with many numbers of previtellogenic oocytes at the perinucleolus stage. Testes of fish in different sexual phases had active spermatogenic germ cells. Organellae of SPC in the ovaries of female-phase fish had active structures of steroid production. In contrast, SPC in the ovaries of male-phase fish did not show active structures of steroid production. Immunopositive reactions against the scc antibody in the ovaries of female-phase fish were very strong, but immunoreactions in the ovaries of male-phase fish were very weak. In the testis, moderate immunopositive signals were obtained from dual-phase male/females. [source]


Immunocytochemical study of activin type IB receptor (XALK4) in Xenopus oocytes

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 2 2003
Akimasa Fukui
Studies have shown that the activin type IB receptor is specific for activin/nodal signaling. Activin is produced by follicle cells in the ovary, and is incorporated into the oocytes. Antisera against three peptides were prepared, encompassing the extracellular, intracellular and serine/threonine kinase domains of the Xenopus type IB activin receptor (XALK4). Immunocytochemistry was done using these antisera to investigate the distribution of XALK4 in the Xenopus ovary. All three antisera stained the mitochondrial cloud of Xenopus previtellogenic oocytes. Purified antibody against the intracellular domain also recognized the mitochondrial cloud. Immunoelectron microscopy localized XALK4 on the endoplasmic reticulum of the mitochondrial cloud, although not on mitochondria. [source]


Development and fine structure of the yolk nucleus of previtellogenic oocytes in the medaka Oryzias latipes

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2000
Hirokuni Kobayashi
The development and fine structure of yolk nuclei in the cytoplasm of previtellogenic oocytes were examined by electron microscopy during several stages of oogenesis in the medaka, Oryzias latipes. Shortly after oogenesis starts, oocytes 20,30 ,m in diameter have much electron-dense (basophilic) cytoplasm, within which a continuous or discontinuous, irregular ring-shaped lower electron-dense area of flocculent appearance (LF) begins to emerge around the nucleus. The yolk nucleus is first recognized within an LF area as a few fragments of dense granular thread measuring 20,25 nm in width. The threads consist of two rows of very dense granules resembling ribosomes or ribonucleoprotein (RNP)-like particles in size and electron density. These thread-like fragments gradually increase in number and length until they assemble into a compact, spherical mass of complicated networks. Analysis of serial sections suggests that the yolk nucleus is a complicated mass of numerous, small deformed vacuoles composed of a single lamella with double layers of ribosomes or RNP-like granules, rather than a mass of granular threads. When oocytes develop to greater than 100 ,m in diameter, the yolk nucleus begins to fragment before dispersing throughout the surrounding cytoplasm, concomitantly with the disappearance of LF areas. At this stage of oogenesis, a restricted region of the granulosa cell layer adjacent to the yolk nucleus becomes somewhat columnar in morphology, fixing the vegetal pole region of the oocyte. [source]


Life stages and reproductive components of the Marmorkrebs (marbled crayfish), the first parthenogenetic decapod crustacean

JOURNAL OF MORPHOLOGY, Issue 3 2004
Günter Vogt
Abstract Recently, we briefly reported on the first case of parthenogenesis in the decapod Crustacea which was found in the Marmorkrebs or marbled crayfish, a cambarid species of unknown geographic origin and species identity. Curiously, this animal is known only from aquarium populations, where it explosively propagates. By means of light and electron microscopic techniques we have now investigated the reproductive components of this crayfish, using more than 100 specimens ranging from hatchling to repeatedly spawned adult. Additionally, we documented its principal life stages. Our results revealed that the external sexual characters and also the gonads of the marbled crayfish are purely female, making this fast-reproducing species a good model for investigating female reproductive features in crayfish. Testicular tissues, ovotestes, or male gonoducts, gonopores, or gonopods were never found, either in small juveniles or large adult specimens, confirming the parthenogenetic nature of this crayfish. Parthenogenesis may have arisen spontaneously or by interspecific hybridization since Wolbachia -like feminizing microorganisms were not found in the ovaries. The external sexual characters of the marbled crayfish are first recognized in Stage 4 juveniles and are structurally complete ,2 months after hatching in specimens of ,2 cm total length. In the same life stage the ovary is fully differentiated as well, although the oocytes are in previtellogenic and primary vitellogenic stages only. The architecture of the mature ovary and also the synchronous maturation of cohorts of primary vitellogenic oocytes by secondary vitellogenesis are in general agreement with data published on ovaries of bisexual crayfish. New results were obtained with respect to the muscular nature of the ovarian envelope and its extensive proliferation after the first spawning, the distribution of hemal sinuses in the ovarian envelope and in the interstitium around the oogenetic pouches, the high transport activity of the follicle cells, and the colonization of oogenetic pouches by previtellogenic oocytes that originate in the germaria. Investigation of the nuclei of oocytes in the germaria and oogenetic pouches revealed no signs of meiosis, as usually found in females of bisexual decapods, suggesting that parthenogenesis in the marbled crayfish might be an apomictic thelytoky. The detection of new rickettsial and coccidian infections in the ovary and further organs raises fears that the marbled crayfish might endanger native European species by transmission of pathogens once escaped into the wild. J. Morphol. 261:286,311, 2004. © 2004 Wiley-Liss, Inc. [source]


Characterization of heat shock protein 90 in the shrimp Metapenaeus ensis: Evidence for its role in the regulation of vitellogenin synthesis

MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 5 2008
Long Tao Wu
Abstract Estrogen hormones play a vital role in the regulation of female reproductive maturation. In oviparous vertebrates, the synthesis of vitellogenin (VTG) is tightly controlled by estrogen hormone signal transduction pathway, which is mediated by estrogen receptor and heat shock protein 90 (Hsp90). In order to investigate whether a similar mechanism exists in crustaceans, the Hsp90 gene was cloned and isolated from the shrimp Metapenaeus ensis by homology cloning strategy. The Hsp90 is 2,524 bp in length, containing an open reading frame of 2,163 bp that encodes a 720 amino acid polypeptide (83 kD). The Hsp90 -coding region is interrupted by four introns. MeHsp90 is differentially expressed in eyestalk, ovary, and hepatopancreas at different ovarian maturation stages, and consistently expressed in other tissues including heart, gill, gut, muscle, and central nervous system. In vitro ovary explant assay reveals that MeHsp90 expression in immature ovary can be induced by the addition of exogenous estradiol-17,, but expression in fully mature ovary exhibits no response to estradiol-17, treatment. In situ hybridization shows that MeHsp90 is highly expressed in previtellogenic oocytes and its expression decreases with the progress of maturation, and finally stops in late-vitellogenic oocytes. Our results indicate a strong correlation between estrogen hormones and Hsp90 expression in shrimp, suggesting that the expression of VTG may be under the regulation of estrogen hormones through a mechanism similar to that in vertebrates. The result provides insights on the control of vitellogenesis in invertebrates. Mol. Reprod. Dev. 75: 952,959, 2008. © 2008 Wiley-Liss, Inc. [source]