Preventing Apoptosis (preventing + apoptosi)

Distribution by Scientific Domains


Selected Abstracts


O -acetylation of GD3 prevents its apoptotic effect and promotes survival of lymphoblasts in childhood acute lymphoblastic leukaemia

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2008
Kankana Mukherjee
Abstract We have previously demonstrated induction of O -acetylated sialoglycoproteins on lymphoblasts of childhood acute lymphoblastic leukaemia (ALL). These molecules promote survival of lymphoblasts by preventing apoptosis. Although O -acetylated sialoglycoproteins are over expressed, the status of O -acetylation of gangliosides and their role in lymphoblasts survival remains to be explored in ALL patients. Here, we have observed enhanced levels of 9- O -acetylated GD3 (9- O -AcGD3) in the lymphoblasts of patients and leukaemic cell line versus disialoganglioside GD3 in comparison to the normal cells. Localization of GD3 and 9- O -AcGD3 on mitochondria of patient's lymphoblasts has been demonstrated by immuno-electron microscopy. The exogenous administration of GD3-induced apoptosis in lymphoblasts as evident from the nuclear fragmentation and sub G0/G1 apoptotic peak. In contrast, 9- O -AcGD3 failed to induce such apoptosis. We further explored the mitochondria-dependent pathway triggered during GD3-induced apoptosis in lymphoblasts. GD3 caused a time-dependent depolarization of mitochondrial membrane potential, release of cytochrome c and 7.4- and 8-fold increased in caspase 9 and caspase 3 activity respectively. However, under identical conditions, an equimolar concentration of 9- O -AcGD3 failed to induce similar effects. Interestingly, 9- O -AcGD3 protected the lymphoblasts from GD3-induced apoptosis when administered in equimolar concentrations simultaneously. In situ de- O -acetylation of 9- O -AcGD3 with sodium salicylate restores the GD3-responsiveness to apoptotic signals. Although both GD3 and 9- O -acetyl GD3 localize to mitochondria, these two structurally related molecules may play different roles in ALL-disease biology. Taken together, our results suggest that O -acetylation of GD3, like that of O -acetylated sialoglycoproteins, might be a general strategy adopted by leukaemic blasts towards survival in ALL. J. Cell. Biochem. 105: 724,734, 2008. © 2008 Wiley-Liss, Inc. [source]


PIKE/nuclear PI 3-kinase signaling in preventing programmed cell death

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2005
Keqiang Ye
Abstract PI 3-kinase enhancer (PIKE) is a nuclear GTPase that enhances PI 3-kinase (PI3K) activity. Nerve growth factor (NGF) treatment leads to PIKE activation by triggering the nuclear translocation of PLC-,1, which acts as a physiological guanine nucleotide exchange factor (GEF) for PIKE. PI3K occurs in the nuclei of a broad range of cell types, and various stimuli elicit PI3K nuclear translocation. While cytoplasmic PI3K has been well characterized, little is known about the biological function of nuclear PI3K. Surprisingly, nuclei from 30 min NGF-treated PC12 cells are resistant to DNA fragmentation initiated by the activated cell-free apoptosome, and both PIKE and nuclear PI3K are sufficient and necessary for this effect. Moreover, pretreatment of the control nucleus with PI(3,4,5)P3 alone mimics the anti-apoptotic activity of NGF by selectively preventing apoptosis, for which nuclear Akt is required but not sufficient. Recently, a nuclear PI(3,4,5)P3 receptor, nucleophosmin/B23, has been identified from NGF-treated PC12 nuclear extract. PI(3,4,5)P3/B23 complex mediates the anti-apoptotic effects of NGF by inhibiting DNA fragmentation activity of caspase-activated DNase (CAD). Thus, PI(3,4,5)P3/B23 complex and nuclear Akt effectors might coordinately mediate PIKE/nuclear PI3K signaling in promoting cell survival by NGF. © 2005 Wiley-Liss, Inc. [source]


STAT proteins: From normal control of cellular events to tumorigenesis,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 2 2003
Valentina Calò
Signal transducers and activators of transcription (STAT) proteins comprise a family of transcription factors latent in the cytoplasm that participate in normal cellular events, such as differentiation, proliferation, cell survival, apoptosis, and angiogenesis following cytokine, growth factor, and hormone signaling. STATs are activated by tyrosine phosphorylation, which is normally a transient and tightly regulates process. Nevertheless, several constitutively activated STATs have been observed in a wide number of human cancer cell lines and primary tumors, including blood malignancies and solid neoplasias. STATs can be divided into two groups according to their specific functions. One is made up of STAT2, STAT4, and STAT6, which are activated by a small number of cytokines and play a distinct role in the development of T-cells and in IFN, signaling. The other group includes STAT1, STAT3, and STAT5, activated in different tissues by means of a series of ligands and involved in IFN signaling, development of the mammary gland, response to GH, and embriogenesis. This latter group of STATS plays an important role in controlling cell-cycle progression and apoptosis and thus contributes to oncogenesis. Although an increased expression of STAT1 has been observed in many human neoplasias, this molecule can be considered a potential tumor suppressor, since it plays an important role in growth arrest and in promoting apoptosis. On the other hand, STAT3 and 5 are considered as oncogenes, since they bring about the activation of cyclin D1, c-Myc, and bcl-xl expression, and are involved in promoting cell-cycle progression, cellular transformation, and in preventing apoptosis. J. Cell. Physiol. 197: 157,168, 2003© 2003 Wiley-Liss, Inc. [source]


The dual role of thymidine phosphorylase in cancer development and chemotherapy

MEDICINAL RESEARCH REVIEWS, Issue 6 2009
Annelies Bronckaers
Abstract Thymidine phosphorylase (TP), also known as "platelet-derived endothelial cell growth factor" (PD-ECGF), is an enzyme, which is upregulated in a wide variety of solid tumors including breast and colorectal cancers. TP promotes tumor growth and metastasis by preventing apoptosis and inducing angiogenesis. Elevated levels of TP are associated with tumor aggressiveness and poor prognosis. Therefore, TP inhibitors are synthesized in an attempt to prevent tumor angiogenesis and metastasis. TP is also indispensable for the activation of the extensively used 5-fluorouracil prodrug capecitabine, which is clinically used for the treatment of colon and breast cancer. Clinical trials that combine capecitabine with TP-inducing therapies (such as taxanes or radiotherapy) suggest that increasing TP expression is an adequate strategy to enhance the antitumoral efficacy of capecitabine. Thus, TP plays a dual role in cancer development and therapy: on the one hand, TP inhibitors can abrogate the tumorigenic and metastatic properties of TP; on the other, TP activity is necessary for the activation of several chemotherapeutic drugs. This duality illustrates the complexity of the role of TP in tumor progression and in the clinical response to fluoropyrimidine-based chemotherapy. © 2009 Wiley Periodicals, Inc. Med Res Rev, 29, No. 6, 903,953, 2009 [source]


Corneal Graft Rejection Is Accompanied by Apoptosis of the Endothelium and Is Prevented by Gene Therapy With Bcl-xL

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 9 2007
R. N Barcia
Corneal transplants normally enjoy a high percentage of survival, mainly because the eye is an immune-privileged site. When allograft failure occurs, it is most commonly due to rejection, an immune-mediated reaction that targets the corneal endothelium. While the exact mechanism by which the endothelium is targeted is still unknown, we postulate that corneal endothelial cell loss during allograft failure is mediated by apoptosis. Furthermore, because corneal endothelial cells do not normally regenerate, we hypothesize that suppressing apoptosis in the graft endothelium will promote transplant survival. In a murine model of transplantation, TUNEL staining and confocal microscopy showed apoptosis of the graft endothelium occurring in rejecting corneas as early as 2 weeks posttransplantation. We found that bcl-xL protected cultured corneal endothelial cells from apoptosis and that lentiviral delivery of bcl-xL to the corneal endothelium of donor corneas significantly improved the survival of allografts. These studies suggest a novel approach to improve corneal allograft survival by preventing apoptosis of the endothelium. [source]


Inhibition of Human Cell Apoptosis by Silkworm Hemolymph

BIOTECHNOLOGY PROGRESS, Issue 4 2002
Shin Sik Choi
Many studies on preventing apoptosis have been carried out from the viewpoint of anti-apoptotic cloned-gene expressions inside cells, whereas in this study, we investigated the inhibition of apoptosis by the addition of silkworm hemolymph, a natural compound, from outside of the cells. In a previous study, we reported the inhibition effect of silkworm hemolymph on the baculovirus-induced insect cell apoptosis. Using the vaccinia virus-HeLa cell system as a model system in this study, we found that silkworm hemolymph, the insect serum, inhibits apoptosis not only in the insect cell system but also in the human cell system. The vaccinia virus-induced HeLa cell apoptosis was analyzed using DNA electrophoresis, TUNEL, and flow cytometry, and the resulting data confirmed that silkworm hemolymph inhibits human cell apoptosis. The inhibition of apoptosis due to silkworm hemolymph was not caused by an inhibition of virus binding and internalization steps, nor did silkworm hemolymph interfere with the virus production. The inhibition of apoptosis by silkworm hemolymph decreased the cell detachment from an adhering surface. With these characteristics, silkworm hemolymph can be effectively used to minimize cell death in commercial animal cell culture. [source]