Home About us Contact | |||
Pressing
Kinds of Pressing Terms modified by Pressing Selected AbstractsTHE EFFECT OF ENZYMATIC MASH TREATMENT, PRESSING, CENTRIFUGATION, HOMOGENIZATION, DEAERATION, STERILIZATION AND STORAGE ON CARROT JUICEJOURNAL OF FOOD PROCESS ENGINEERING, Issue 4 2007HONGMEI LIAO ABSTRACT The enzyme preparation Pectinex Smash XXL was employed to macerate the carrot pulp, the effect of enzymatic mash treatment (EMT), pressing, centrifugation, homogenization, deaeration, sterilization and storage on carrot juice was investigated. As compared with the control sample, an increase of juice yield, total soluble solid (TSS) and carotenoids in carrot juice was close to 20%, 1% and 26 mg/kg, respectively, after EMT. The EMT also increased the color parameters CIEL*, a*and C*values in carrot juice. However, it significantly decreased the viscosity from 2.54 to 2.09 mPa·s. The centrifugation resulted in a significant decline in turbidity from 240.33 to 187.33 NTU and a significant increase in the color parameters in carrot juice. After homogenization, the turbidity and the carotenoids in carrot juice were significantly reduced from 187.33 to 161.67 NTU and from 61.87 to 58.76 mg/kg, respectively. The turbidity and carotenoids in carrot juice decreased during storage, and all the color parameters had a closer relationship with storage temperature and time; higher storage temperature and longer storage time caused greater loss of color. [source] DEVELOPMENT and EVALUATION of MICROWAVE HEATING of APPLE MASH AS A PRETREATMENT to PRESSINGJOURNAL OF FOOD PROCESS ENGINEERING, Issue 1 2004J.S. ROBERTS ABSTRACT Fuji, McIntosh, and Red Delicious apple mashes were heated in a 2450 MHz oven to achieve bulk temperatures of 40, 50, 60, and 70C. Three kilograms of mash at a depth of 0.016 m heated using 1500 W were the optimum parameters to heat apple mash in the microwave. Variety of the apple mash was shown not to have a significant effect on the heating performance. Comparing actual bulk temperature to the predicted bulk temperatures of 40, 50, 60, and 70C showed reproducibility of heating these mashes using microwave energy. Average variation between actual and predicted bulk temperatures were 1.48C for the Fuji mash, 0.98C for the McIntosh mash, and 1.13C for the Red Delicious mash. In addition, regional heating was investigated and four distinct regions of heating were observed: the corner, the edge, the middle, and the center. Color and moisture content of the mash were also measured and compared to unheated mash at 21C. [source] Equal Channel Angular Pressing of a Mg,3Al,1Zn Alloy with Back Pressure,ADVANCED ENGINEERING MATERIALS, Issue 8 2010Feng Kang Abstract An extruded Mg,3Al,1Zn alloy bar is subjected to 1,4 passes equal channel angular pressing (ECAP) with or without 125,MPa backpressure via route Bc at 200,°C. Both strength and ductility are significantly increased after ECAP with backpressure; this is in strong contrast to the case of ECAP without backpressure, where significant improvement in ductility is accompanied by obvious decrease in yield strength from texture softening. Compared to ECAP without backpressure, much enhanced grain refinement, and the split of the dominant texture component of (0002) pole were observed with scatter intensity peaks in the case after ECAP with backpressure. This turns out to be resulted mainly from the activation of new slip system together with enhanced dynamic recrystallization under the effect of backpressure. The improvement of both strength and ductility in Mg,3Al,1Zn alloy through ECAP with back pressure provides a better approach to meet the engineering requests on comprehensive performance of this light alloy. [source] Cost-Affordable Technique Involving Equal Channel Angular Pressing for the Manufacturing of Ultrafine Grained Sheets of an Al,Li,Mg,Sc Alloy,ADVANCED ENGINEERING MATERIALS, Issue 8 2010Rustam Kaibyshev A two-step process consisting of modified equal channel angular pressing (ECAP) and subsequent isothermal rolling (IR) was developed to produce thin sheets of aluminum alloys with ultra-fine grained (UFG) structure. Significant increase in the efficiency of ECAP was attained by using flat billets and a back pressure system. The incorporation of final IR into technologic route provides a reduced strain which is necessary to impose for the fabrication of thin sheets with UFG structure. In addition, it allows producing relatively "long billets." In order to demonstrate the feasibility of this technique an Al,5.1Mg,2.1Li,0.17Sc,0.08Zr (wt %) alloy was subjected to ECAP at 325,°C to a total strain of ,8 using processing route CX. The operation time of this processing did not exceed 15,min. Subsequent IR at the same temperature with a total reduction of 88% was applied to produce thin sheets with a 1.8,mm thickness and an average size of recrystallized grains of ,1.6,µm. These sheets exhibit extraordinary high superplastic ductilities. In addition, this material demonstrated almost isotropic mechanical behavior at room temperature. The maximum elongation-to-failure of ,2700% was attained at a temperature of 450,°C and an initial strain rate of 1.4,×,10,2 s,1. Thus it was demonstrated that the two-step processing consisting of ECAP with a back pressure followed by IR was a simple technique providing potential capability for the fabrication of superplastic sheets from an Al,Mg,Li,Sc alloy on a commercial scale. [source] Hot Isostatic Pressing of Transparent Nd:YAG CeramicsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 7 2009Sang-Ho Lee This paper demonstrates that fine-grained (2,3 ,m), transparent Nd:YAG can be achieved at SiO2 doping levels as low as 0.02 wt% by the sinter plus hot isostatic pressing (HIP) approach. Fine grain size is assured by sintering to 98% density, in order to limit grain growth, followed by HIP. Unlike dry-pressed samples, tape-cast samples were free of large, agglomerate-related pores after sintering, and thus high transparency (i.e., >80% transmission at 1064 nm) could be achieved by HIP at <1750°C along with lower silica levels, thereby avoiding conditions shown to cause exaggerated grain growth. Grain growth was substantially limited at lower SiO2 levels because silica is soluble in the YAG lattice up to ,0.02,0.1 wt% at 1750°C, thus allowing sintering and grain growth to occur by solid-state diffusional processes. In contrast, liquid phase enhanced densification and grain growth occur at ,0.08,0.14 wt% SiO2, especially at higher temperatures, because the SiO2 solubility limit is exceeded. [source] Hot Isostatic Pressing of Cubic Boron Nitride,Tungsten Carbide/Cobalt (cBN,WC/Co) Composites: Effect of cBN Particle Size and Some Processing Parameters on their Microstructure and PropertiesJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 2 2007V. Martínez Cubic boron nitride (cBN)-cemented carbide composites have gained attraction over the last few years because of their potential uses as wear parts. The densification behavior of cBN,hard metal composites by glass encapsulation hot isostatic pressing,has been investigated. Composites with different cBN grades (from 0/0.5 to 6/12 ,m particle sizes) and cBN content (up to 50 vol%) were selected for this study. Near-full densification was obtained at temperatures between 1100° and 1200°C, and pressures between 150 and 200 MPa, respectively, while no phase transformation of cBN into the low-hardness hexagonal form has been detected by X-ray diffraction. The addition of cBN to the hard metal base material led to an increase of hardness, a significant increase of fracture toughness (KIC measured by Vickers indentation), and a moderate decrease of mechanical strength (determined by three-point bending). [source] Translucent ,-Sialon Ceramics by Hot PressingJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 4 2004Xinlu Su The single-phase ,-sialon ceramics with high optical transmittance have been prepared by hot pressing. The maximum transmittance reached 65.2% and 52.2% in the infrared wavelength region, 58.5% and 40% in the visible region for the samples 1.0 and 1.5 mm thickness, respectively. The material also exhibited good mechanical properties of high hardness (20 GPa) and better fracture toughness (5.1 MPa·m1/2). Both high optical transmittance and improved toughness of ,-sialon ceramics were attributed to the less-grain-boundary glassy phase and the homogeneous microstructure, which was obtained by a proper process and confirmed by SEM and TEM observation, compared to that prepared by ordinary sintering. It is, therefore, expected that the translucent ,-sialon ceramics could be a promising optical window material. [source] Manufacturing Silicon Carbide Microrotors by Reactive Hot Isostatic Pressing within Micromachined Silicon MoldsJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2002Jing-Feng Li A novel ceramic microfabrication process,based on the idea of silicon carbide (SiC) reaction sintering within a micromachined silicon mold,has been developed to produce a SiC microroter for miniaturized gas turbines. The new process involves the micromachining of silicon molds; filling the molds with powder mixtures of ,-SiC, graphite, and phenol resin; bonding the molds with an adhesive; reaction sintering by hot isostatic pressing (HIP); and the releasing of a reaction-sintered workpiece from the mold by wet etching. Using this process, we have successfully fabricated SiC microrotors with a diameter of 5 mm, whose complicated geometry was well transferred from the negative shape of the micromachined silicon mold. The reaction-HIPed SiC ceramics within Si molds showed reasonably good mechanical properties, which are comparable to those of the commercialized reaction-sintered SiC ceramics. [source] Al2O3/TiC Based Metal Cutting Tools by Microwave Sintering Followed by Hot Isostatic PressingJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 6 2000Adrian Goldstein The feasibility of producing Al2O3/TiC metal cutting tools by fast microwave sintering followed by hot isostatic pressing was examined. Microwave heating profiles able to ensure near-full densification of Al2O3/TiC ceramic components were determined. Simple-shape specimens could be sintered to a bulk density of 97% theoretical density (TD) while in the case of tool-shaped ones maximal densification levels attained were somewhat lower, i.e., ,95% TD. Temperature uniformization,within the heating chamber,by using a particulate SiC susceptor noticeably reduced tool cracking propensity. Densification levels in the range acceptable for commercial tool manufacturing (,98% TD) were achieved by hot isostatic pressing of the microwave-sintered parts. The isostatically pressed parts exhibited a Vickers hardness Hv, 2000 kg/mm2 and a fracture toughness KIC, 4.3 MPa·m1/2. [source] Effects of Pressing Lignocellulosic Biomass on Sugar Yield in Two-Stage Dilute-Acid Hydrolysis ProcessBIOTECHNOLOGY PROGRESS, Issue 3 2002Kyoung Heon Kim Dilute sulfuric acid catalyzed hydrolysis of biomass such as wood chips often involves pressing the wood particles in a dewatering step (e.g., after acid impregnation) or in compression screw feeders commonly used in continuous hydrolysis reactors. This study addresses the effects of pressing biomass feedstocks using a hydraulic press on soluble sugar yield obtained from two-stage dilute-acid hydrolysis of softwood. The pressed acid-impregnated feedstock gave significantly lower soluble sugar yields than the never-pressed (i.e., partially air-dried or filtered) feedstock. Pressing acid-impregnated feedstocks before pretreatment resulted in a soluble hemicellulosic sugar yield of 76.9% from first-stage hydrolysis and a soluble glucose yield of 33.7% from second-stage hydrolysis. The dilute-acid hydrolysis of partially air-dried feedstocks having total solids and acid concentrations similar to those of pressed feedstocks gave yields of 87.0% hemicellulosic sugar and 46.9% glucose in the first and second stages, respectively. Microscopic examination of wood structures showed that pressing acid-impregnated wood chips from 34 to 54% total solids (TS) did not cause the wood structure to collapse. However, pressing first-stage pretreated wood chips (i.e., feedstock for second-stage hydrolysis) from approximately 30 to 43% TS caused the porous wood matrix to almost completely collapse. It is hypothesized that pressing alters the wood structure and distribution of acid within the cell cavities, leading to uneven heat and mass transfer during pretreatment using direct steam injection. Consequently, lower hydrolysis yield of soluble sugars results. Dewatering of corn stover by pressing did not impact negatively on the sugar yield from single-stage dilute-acid pretreatment. [source] Mechanical activation of precursors for nanocrystalline materialsCRYSTAL RESEARCH AND TECHNOLOGY, Issue 1 2003H. Heegn Abstract Nanostructured materials win big scientific interest and increasingly economic meaning through their specific exceptional properties. Precursors that were compacted by pressing and sintering are normally used preparation of materials. In present work, the influence of mechanical activation by grinding on the structure as well as on compacting and sintering behavior of oxides from magnesium, aluminium and silicon has been investigated. Starting materials for each metal oxide differ in microstructure, dispersity, and porosity. The influence of mechanical activation on the destruction of crystalline structure to nanocrystalline, as well as to the amorphous stage and the compaction of powders with nano-particles, as well as structures with nanoscale pores have been compared. The possibilities of the consolidation of nanostructured materials were investigated. The mechanical activation took place in a disc vibration mill. The mechanical activated materials as well as their pressing and their sintering products were characterized by density, particle-sizedistribution, specific surface, pore-structure, microstructure, and crystallite size by X-ray powder diffraction (XRD). The mechanical activation of the model-substances led, in most cases, to an improvement of the compaction properties; thus, this improvement can be achieved with subsequent sintering densities up to 98% of the theoretical density. From these experiments, generalizations transferable to other materials can be made. [source] An alternative method for fabricating a custom-made metal post with a ceramic coreDENTAL TRAUMATOLOGY, Issue 3 2005Sabire Deger Abstract,,, The restoration of anterior non-vital teeth with metal posts and cores and all-ceramic restorations may lead to compromised esthetics because of the semitranslucence of ceramics and the metallic color of the underlying post and cores. This article presents a technique that combines the optical properties of ceramic cores with the mechanical properties of custom-made cast metal posts. The technique involves heat pressing of the core from leucite-enriched glass-ceramic to the underlying custom-made metal post and may provide additional esthetic benefit for anterior teeth especially with little remaining coronal dentin and with small root volume. [source] Ecological implications of plants' ability to tell the timeECOLOGY LETTERS, Issue 6 2009Víctor Resco Abstract The circadian clock (the endogenous mechanism that anticipates diurnal cycles) acts as a central coordinator of plant activity. At the molecular and organism level, it regulates key traits for plant fitness, including seed germination, gas exchange, growth and flowering, among others. In this article, we explore current evidence on the effect of the clock for the scales of interest to ecologists. We begin by synthesizing available knowledge on the effect of the clock on biosphere,atmosphere interactions and observe that, at least in the systems where it has been tested, the clock regulates gas exchange from the leaf to the ecosystem level, and we discuss its implications for estimates of the carbon balance. Then, we analyse whether incorporating the action of the clock may help in elucidating the effects of climate change on plant distributions. Circadian rhythms are involved in regulating the range of temperatures a species can survive and affects plant interactions. Finally, we review the involvement of the clock in key phenological events, such as flowering time and seed germination. Because the clock may act as a common mechanism affecting many of the diverse branches of ecology, our ultimate goal is to stimulate further research into this pressing, yet unexplored, topic. [source] Consolidation of Particles by Severe Plastic Deformation: Mechanism and Applications in Processing Bulk Ultrafine and Nanostructured Alloys and Composites,ADVANCED ENGINEERING MATERIALS, Issue 8 2010Kenong Xia Severe plastic deformation (SPD) can be used to consolidate particles into bulk ultrafine and nanostructured materials. SPD consolidation relies on plastic deformation of individual particles, rather than diffusion, to achieve bonding and thus can be carried out at much lower temperatures. Using examples of consolidation of Al particles by back pressure equal channel angular pressing (BP-ECAP), it is demonstrated that full consolidation is achieved when the particles are sheared to disrupt the surface oxide layer whereas consolidation is impossible or incomplete in the case of particles sliding over each other. The effects of particle characteristics such as size, shape, strength and surface condition, as well as processing parameters including temperature and back pressure, are discussed to shed light on the mechanism of SPD consolidation. Potential applications of SPD in powder consolidation and processing of bulk ultrafine and nanostructured materials are discussed. [source] Equal Channel Angular Pressing of a Mg,3Al,1Zn Alloy with Back Pressure,ADVANCED ENGINEERING MATERIALS, Issue 8 2010Feng Kang Abstract An extruded Mg,3Al,1Zn alloy bar is subjected to 1,4 passes equal channel angular pressing (ECAP) with or without 125,MPa backpressure via route Bc at 200,°C. Both strength and ductility are significantly increased after ECAP with backpressure; this is in strong contrast to the case of ECAP without backpressure, where significant improvement in ductility is accompanied by obvious decrease in yield strength from texture softening. Compared to ECAP without backpressure, much enhanced grain refinement, and the split of the dominant texture component of (0002) pole were observed with scatter intensity peaks in the case after ECAP with backpressure. This turns out to be resulted mainly from the activation of new slip system together with enhanced dynamic recrystallization under the effect of backpressure. The improvement of both strength and ductility in Mg,3Al,1Zn alloy through ECAP with back pressure provides a better approach to meet the engineering requests on comprehensive performance of this light alloy. [source] Cost-Affordable Technique Involving Equal Channel Angular Pressing for the Manufacturing of Ultrafine Grained Sheets of an Al,Li,Mg,Sc Alloy,ADVANCED ENGINEERING MATERIALS, Issue 8 2010Rustam Kaibyshev A two-step process consisting of modified equal channel angular pressing (ECAP) and subsequent isothermal rolling (IR) was developed to produce thin sheets of aluminum alloys with ultra-fine grained (UFG) structure. Significant increase in the efficiency of ECAP was attained by using flat billets and a back pressure system. The incorporation of final IR into technologic route provides a reduced strain which is necessary to impose for the fabrication of thin sheets with UFG structure. In addition, it allows producing relatively "long billets." In order to demonstrate the feasibility of this technique an Al,5.1Mg,2.1Li,0.17Sc,0.08Zr (wt %) alloy was subjected to ECAP at 325,°C to a total strain of ,8 using processing route CX. The operation time of this processing did not exceed 15,min. Subsequent IR at the same temperature with a total reduction of 88% was applied to produce thin sheets with a 1.8,mm thickness and an average size of recrystallized grains of ,1.6,µm. These sheets exhibit extraordinary high superplastic ductilities. In addition, this material demonstrated almost isotropic mechanical behavior at room temperature. The maximum elongation-to-failure of ,2700% was attained at a temperature of 450,°C and an initial strain rate of 1.4,×,10,2 s,1. Thus it was demonstrated that the two-step processing consisting of ECAP with a back pressure followed by IR was a simple technique providing potential capability for the fabrication of superplastic sheets from an Al,Mg,Li,Sc alloy on a commercial scale. [source] Suppression of Ni4Ti3 Precipitation by Grain Size Refinement in Ni-Rich NiTi Shape Memory Alloys,ADVANCED ENGINEERING MATERIALS, Issue 8 2010Egor A. Prokofiev Severe plastic deformation (SPD) processes, such as equal channel angular pressing (ECAP) and high pressure torsion (HPT), are successfully employed to produce ultra fine grain (UFG) and nanocrystalline (NC) microstructures in a Ti,50.7,at% Ni shape memory alloy. The effect of grain size on subsequent Ni-rich particle precipitation during annealing is investigated by transmission electron microscopy (TEM), selected area electron diffraction (SAD, SAED), and X-ray diffraction (XRD). It is observed that Ni4Ti3 precipitation is suppressed in grains of cross-sectional equivalent diameter below approximately 150,nm, and that particle coarsening is inhibited by very fine grain sizes. The results suggest that fine grain sizes impede precipitation processes by disrupting the formation of self-accommodating particle arrays and that the arrays locally compensate for coherency strains during nucleation and growth. [source] Enhanced Strength and Ductility of Ultrafine-Grained Ti Processed by Severe Plastic Deformation,ADVANCED ENGINEERING MATERIALS, Issue 8 2010Irina Semenova This work deals with the study of strength and ductility in ultrafine-grained (UFG) Ti Grade 4 produced by equal channel angular pressing (ECAP) in combination with subsequent thermomechanical treatments. We found that additional annealing of UFG Ti resulted in unusual enhancement of strength and ductility, which is associated with not only small grain size but also with a grain boundary structure. The origin of this phenomenon is investigated using the results of transmission electron microscopy and atom probe tomography. The innovation potential of UFG Ti for medical use is considered. [source] Blockade of NMDA receptors in the dorsomedial striatum prevents action,outcome learning in instrumental conditioningEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2005Henry H. Yin Abstract Although there is consensus that instrumental conditioning depends on the encoding of action,outcome associations, it is not known where this learning process is localized in the brain. Recent research suggests that the posterior dorsomedial striatum (pDMS) may be the critical locus of these associations. We tested this hypothesis by examining the contribution of N -methyl- d -aspartate receptors (NMDARs) in the pDMS to action,outcome learning. Rats with bilateral cannulae in the pDMS were first trained to perform two actions (left and right lever presses), for sucrose solution. After the pre-training phase, they were given an infusion of the NMDA antagonist 2-amino-5-phosphonopentanoic acid (APV, 1 mg/mL) or artificial cerebral spinal fluid (ACSF) before a 30-min session in which pressing one lever delivered food pellets and pressing the other delivered fruit punch. Learning during this session was tested the next day by sating the animals on either the pellets or fruit punch before assessing their performance on the two levers in extinction. The ACSF group selectively reduced responding on the lever that, in training, had earned the now devalued outcome, whereas the APV group did not. Experiment 2 replicated the effect of APV during the critical training session but found no effect of APV given after acquisition and before test. Furthermore, Experiment 3 showed that the effect of APV on instrumental learning was restricted to the pDMS; infusion into the dorsolateral striatum did not prevent learning. These experiments provide the first direct evidence that, in instrumental conditioning, NMDARs in the dorsomedial striatum are involved in encoding action,outcome associations. [source] Microstructure and Compression Strength of Novel TRIP-Steel/Mg-PSZ Composites,ADVANCED ENGINEERING MATERIALS, Issue 12 2009Horst Biermann Abstract Novel composites on basis of austenitic stainless TRIP-steel as matrix with reinforcements of Mg-PSZ are presented. Compact rods were produced by cold isostatic pressing and sintering, square honeycomb samples by the ceramic extrusion technique. The samples are characterized by optical and scanning electron microscopy before and after deformation, showing the microstructure and the deformation- induced martensite formation. The mechanical properties of samples with 5,vol% zirconia are superior compared to zirconia-free samples and composites with higher zirconia contents in terms of bending and compression tests. The honeycomb samples exhibit extraordinary high specific energy absorption in compression. [source] Synthesis and Low Cycle Fatigue Behavior of In-situ Al-based Composite Reinforced with Submicron TiB2 and TiC Particulates,ADVANCED ENGINEERING MATERIALS, Issue 12 2004S.C. Tjong Low cycle fatigue behavior of in-situ aluminum based composite reinforced with submicron TiB2 and TiC particulates was investigated. This novel composite was prepared from the TiO2 -Al-B-C system via reactive hot pressing. The incorporation of carbon into such a system induces the formation of TiC particulate at the expense of brittle Al3Ti phase. The influence of submicron particulate formation on the tensile and fatigue properties of the composite is discussed. [source] Properties of ZrB2 -Reinforced Ternary Composites,ADVANCED ENGINEERING MATERIALS, Issue 9 2004D. Sciti Different amounts of ZrB2 particles are added to a matrix constituted by AlN+SiC for the production of novel electro-conductive composites by hot pressing. The presence of ZrB2 particles makes the composites electro-conductive and improves many relevant mechanical properties, such as toughness, hardness and strength. The new materials can reach a fracture toughness of 4 MPa.m1/2 and strength of 504 MPa at 1400°C. [source] Hot-Pressed Glass Matrix Composites Containing Pyrochlore Phase Particles for Nuclear Waste Encapsulation,ADVANCED ENGINEERING MATERIALS, Issue 7 2003A.R. Boccaccini As alternative immobilization materials for Pu-bearing nuclear waste, lead-containing glass matrix composites with homogeneously distributed lanthanum zirconate pyrochlore particles (up to 30,% by volume) have been developed. Fabrication by hot pressing at the relatively mild temperature of 610,°C leaves the pyrochlore structure of the La zirconate unchanged, which is crucial for the containment of radioactive nuclei. The Figure, an SEM image of a polished sample with 30,% La2Zr2O7, demonstrates the homogeneous particle distribution and absence of pores. [source] European Banking Integration: Don't Put the Cart before the HorseFINANCIAL MARKETS, INSTITUTIONS & INSTRUMENTS, Issue 2 2006Jean Dermine This paper reviews the progress in European banking integration over the last twenty years, and evaluates the current system of banking supervision and deposit insurance based on ,home country' control. The public policy implications to draw from the paper are threefold: First, after a relatively slow start, European banking integration is gaining momentum, in terms of cross-border flows, market share of foreign banks in several domestic markets, and cross-border M&As of significant size. If this trend continues, the issue of adequate supervision and safety nets in an integrated European banking market will become even more pressing. Second, although until recently banks have relied mostly on subsidiary structures to go cross-border, this is changing with the recent creation of the European company statute, which facilitates cross-border branch banking. A review of the case of the Scandinavian bank, Nordea Bank AB, helps to understand some remaining barriers to integration, and the supervisory issues raised by branch banking. Third, it is argued that the principle of ,home country' supervision is unlikely to be adequate in the future for large international banks. Because the closure of an international bank would be likely to have cross-border spillovers, and because some small European countries might be unable to finance the bail-out of their very large banks, centralization, or at least Europe-wide coordination, of the decision to close or bail-out international banks is needed. This raises the issue of European funding of bail-out costs, European banking supervision, and European deposit insurance. [source] Asymmetric Abstraction and Allocation: The Israeli-Palestinian Water Pumping RecordGROUND WATER, Issue 1 2009Mark Zeitoun The increased attention given to international transboundary aquifers may be nowhere more pressing than on the western bank of the Jordan River. Hydropolitical analysis of six decades of Israeli and Palestinian pumping records reveals how ground water abstraction rates are as asymmetrical as are water allocations. The particular hydrogeology of the region, notably the variability in depth to ground water, variations in ground water quality, and the vulnerability of the aquifer, also affect the outcome. The records confirm previously drawn conclusions of the influence of the agricultural lobby in maintaining a supply-side water management paradigm. Comparison of water consumption rates divulges that water consumed by all sectors of the farming-based Palestinian economy is less than half of Israeli domestic consumption. The overwhelming majority of "reserve" flows from wet years are sold at subsidized rates to the Israeli agricultural sector, while very minor amounts are sold at normal rates to the Palestinian side for drinking water. An apparent coevolution of water resource variability and politics serves to explain increased Israeli pumping prior to negotiations in the early 1990s. The abstraction record from the Western Aquifer Basin discloses that the effective limit set by the terms of the 1995 Oslo II Agreement is regularly violated by the Israeli side, thereby putting the aquifer at risk. The picture that emerges is one of a transboundary water regime that is much more exploitative than cooperative and that risks spoiling the resource as it poisons international relations. [source] Simple Patterning via Adhesion between a Buffered-Oxide Etchant-Treated PDMS Stamp and a SiO2 Substrate,ADVANCED FUNCTIONAL MATERIALS, Issue 13 2007Y.-K. Kim Abstract A very simple polydimethylsiloxane (PDMS) pattern-transfer method is devised, called buffered-oxide etchant (BOE) printing. The mechanism of pattern transfer is investigated, by considering the strong adhesion between the BOE-treated PDMS and the SiO2 substrate. PDMS patterns from a few micrometers to sub-micrometer size are transferred to the SiO2 substrate by just pressing a stamp that has been immersed in BOE solution for a few minutes. The patterned PDMS layers work as perfect physical and chemical passivation layers in the fabrication of metal electrodes and V2O5 nanowire channels, respectively. Interestingly, a second stamping of the BOE-treated PDMS on the SiO2 substrate pre-patterned with metal as well as PDMS results in a selective transfer of the PDMS patterns only to the bare SiO2. In this way, the fabrication of a device structure consisting of two Au electrodes and V2O5 nanowire network channels is possible; non-ohmic semiconducting I,V characteristics, which can be modeled by serially connected percolation, are observed. [source] Water-Based Method for Processing Aluminum Oxynitride (AlON)INTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 6 2008Lior Miller A water-based method for producing aluminum oxynitride (AlON) green bodies with a relatively high density is described. While alcohol is usually the medium for ball milling, this approach utilizes water to form a rigid network of aluminum hydroxide in Al2O3,AlN preforms. Al2O3,AlN preforms were prepared by four different routes based either on alcohol or water-based slips, and underwent identical sintering procedures. Samples prepared using the water-based method and pressure filtration reached a green density of 67%, compared with 52% and 47% for samples prepared from alcohol-based slips and formed using pressure filtration and dry pressing, respectively. [source] Reactive Processing in Ceramic-Based SystemsINTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 1 2006William G. Fahrenholtz Reactive hot pressing is discussed as a processing method to form ceramic-based materials. Fundamental aspects of thermodynamics such as favorable Gibbs'-free energy changes, phase equilibria, and adiabatic temperature are presented as criteria for determining whether the desired reactions can be used to form dense materials. Two case studies are presented as examples to describe control of microstructure and properties. The fabrication of Al2O3,Nb and ZrB2 are discussed with respect to the three thermodynamic criteria as well as the microstructure and properties of the materials that are produced. [source] Experience, change and vulnerability: consumer education for older people revisitedINTERNATIONAL JOURNAL OF CONSUMER STUDIES, Issue 3 2002Phil Lyon Abstract Everyday consumer transactions have the same potential for unexpected consequence whatever the age of the consumers involved. Young and old alike can find that products and services fail to live up to performance claims and that they are left with problems not easily resolved, or costs that are difficult to recover. While not overlooking consumer heterogeneity , especially on the basis of age , older consumers are arguably distinguishable in terms of the social and financial context in which they make decisions and attempt to redress problems. In 1988, attention was drawn to the need for consumer education to look beyond generic objectives to the specific situation of older people and their transactions. More than a decade later, in an allegedly consumer-oriented society, the issue is revisited here to assess the argument's current relevance. Despite the increased availability of information for decisions and consumer protection, difficulties persist in the way information is presented or accessed. Chameleon-like, old problems become manifest in new unfamiliar ways and invalidate experience. Consumer education today is as important as it was in 1988. Arguably, technological change means that the need for a better understanding of dangers, rights and redress procedures is greater than ever and the needs of older people in increasingly complex private and public sector transaction environments are all the more pressing. However, a fundamental revision of the way we approach the design of products, services and environments is needed to improve prospects for older consumers. [source] Experimental Evidence for Grain-Boundary Sliding in Ultrafine-Grained Aluminum Processed by Severe Plastic Deformation,ADVANCED MATERIALS, Issue 1 2006Q. Chinh Evidence for grain boundary sliding in ultrafine-grained aluminum after processing with equal channel angular pressing (ECAP) is presented (see Figure). Pure aluminum is used as a model material; depth sensing indentation testing and atomic force microscopy are used to measure the nature of the displacements around indentations for samples in an annealed and work-hardened condition, and after processing using ECAP. [source] |