Presurgical Work-up (presurgical + work-up)

Distribution by Scientific Domains


Selected Abstracts


Automated normalized FLAIR imaging in MRI-negative patients with refractory focal epilepsy

EPILEPSIA, Issue 6 2009
Niels K. Focke
Summary Background:, Patients with focal epilepsy that is refractory to medical treatment are often considered candidates for resective surgery. Magnetic resonance imaging (MRI) has a very important role in the presurgical work-up of these patients, but is unremarkable in about one-third of cases. These patients are often deferred from surgery or have a less positive outcome if surgery is eventually undertaken. The aim of this study was to evaluate our recently described voxel-based technique using routine T2-FLAIR (fluid-attenuated inversion-recovery) scans in MRI-negative patients and to compare the results with video-EEG (electroencephalography) telemetry (VT) findings. Methods:, We identified 70 epilepsy patients with refractory focal seizures who underwent VT and had a normal routine MRI. T2-FLAIR scans were bias-corrected, and intensity and spatially normalized (nFSI) using Statistical Parametric Mapping 5 (SPM5) as previously described. Individual scans were then compared against a set of 25 normal controls using a voxel-based method. Results:, SPM5 identified 10 patients with suprathreshold clusters (14.3%). In 50% of these there was concordance between the lobe of the most significant cluster and the presumed lobe of seizure onset, as defined by VT. All cases were concordant with respect to lateralization of the putative focus. Conclusion:, Using nFSI we identified focal structural cerebral abnormalities in 11.4% of patients with refractory focal seizures, and normal conventional MRI, that were fully or partially concordant with scalp VT. This voxel-based analysis of FLAIR scans, which are widely available, could provide a useful tool in the presurgical evaluation of epilepsy patients. Ongoing work is to compare these imaging findings with the results of intracranial EEG and histology of surgical resections. [source]


Language lateralization in temporal lobe epilepsy using functional MRI and probabilistic tractography

EPILEPSIA, Issue 8 2008
Sebastian Rodrigo
Summary Purpose: Language functional magnetic resonance imaging (fMRI) is used to noninvasively assess hemispheric language specialization as part of the presurgical work-up in temporal lobe epilepsy (TLE). White matter asymmetries on diffusion tensor imaging (DTI) may be related to language specialization as shown in controls and TLE. To refine our understanding of the effect of epilepsy on the structure,function relationships, we focused on the arcuate fasciculus (ArcF) and the inferior occipitofrontal fasciculus (IOF) and tested the relationship between DTI- and fMRI-based lateralization indices in TLE. Methods: fMRI with three language tasks and DTI were obtained in 20 patients (12 right and 8 left TLE). The ArcF, a major language-related tract, and the IOF were segmented bilaterally using probabilistic tractography to obtain fractional anisotropy (FA) lateralization indices. These were correlated with fMRI-based lateralization indices computed in the inferior frontal gyrus (Pearson's correlation coefficient). Results: fMRI indices were left-lateralized in 16 patients and bilateral or right-lateralized in four. In the ArcF, FA was higher on the left than on the right side, reaching significance in right but not in left TLE. We found a positive correlation between ArcF anisotropy and fMRI-based lateralization indices in right TLE (p < 0.009), but not in left TLE patients. No correlation was observed for the IOF. Conclusions: Right TLE patients with more left-lateralized functional activations also showed a leftward-lateralized arcuate fasciculus. The decoupling between the functional and structural indices of the ArcF underlines the complexity of the language network in left TLE patients. [source]


3T versus 1.5T phased-array MRI in the presurgical work-up of patients with partial epilepsy of uncertain focus

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 2 2009
Maeike Zijlmans MD
Abstract Purpose To study 3T compared to 1.5T phased array magnetic resonance imaging (MRI) in the presurgical work-up of patients with epilepsy with complex focus localization. Materials and Methods In all, 37 patients (>10 years) in preoperative work-up for epilepsy surgery were offered 3T in addition to 1.5T MRI if ambiguity existed about the epileptic focus. Scans were randomly reviewed by two observers, blinded for prior imaging, patient-identifying information, and each other's assessments, followed by a consensus meeting. The number of abnormal scans, detected lesions, and interobserver agreement were calculated and compared. The final consensus was compared to original scan reports. Results One observer identified 22 lesions in both 3 and 1.5T scans, while the second identified more lesions in 1.5T scans (28 vs. 20). 3T MRI had better interobserver agreement. 3T revealed more dysplasias, while 1.5T revealed more tissue loss and mesial temporal sclerosis (MTS). The final consensus yielded 29 lesions, whereas original reports identified only 17 lesions. Conclusion The 3T scans revealed different lesions compared to 1.5T. Patients can benefit most from 3T scans when a dysplasia is suspected. Reevaluation by another experienced neuroradiologist is advised in case of negative or equivocal MRIs. J. Magn. Reson. Imaging 2009;30:256,262. © 2009 Wiley-Liss, Inc. [source]