Prescribed Burns (prescribed + burn)

Distribution by Scientific Domains


Selected Abstracts


Responses to Fire in Selected Tropical Dry Forest Trees,

BIOTROPICA, Issue 5 2006
Sarah M. Otterstrom
ABSTRACT Fire is a frequent disturbance in the tropical dry forests of Central America, yet very little is known about how native species respond to such events. We conducted an experimental burn in a tropical dry forest of western Nicaragua to evaluate plant responses to fire with respect to survivorship and recruitment. Measurements of woody vegetation of all size classes were carried out prior to the prescribed burn and three successive years post fire. We selected the 15 most abundant species <10 cm DBH to assess percent survivorship and sprouting responses post fire. Changes in seedling densities for these 15 most abundant species and the 15 least abundant species were analyzed using a repeated measure ANOVA. We also assessed changes in seedling densities for three species of international conservation concern. We found three major fire-coping strategies among common dry forests plants: resisters (low fire-induced mortality), resprouters (vigorous sprouting), and recruiters (increased seeding post-fire). While survivorship was generally high relative to tropical moist forest species, those species with lower survivorship used either seeding or sprouting as an alternative strategy for persisting in the forest community. Seed dispersal mechanisms, particularly wind dispersal, appear to be an important factor in recruitment success post-fire. Burn treatment led to a significant increase in the density of seedlings for two species of conservation concern: Guaiacum sanctum and Swietenia humilis. Results of this study suggest that common dry forest species in western Nicaragua are fire tolerant. Further study of individual species and their fire responses is merited. RESUMEN El incendio forestal causa perturbación frecuente en los bosques secos tropicales de Centroamérica, sin embargo se conoce poco del comportamiento de las especies nativas a ésta perturbación. Nosotros llevamos a acabo una quema experimental en un bosque seco tropical de Nicaragua occidental para evaluar el comportamiento de la flora con respecto a la sobrevivencia y reclutamiento de las especies después de la quema. Se midió todas las clases diamétricas de la vegetación leñosa antes de la quema controlada y durante 3 años consecutivos después de la quema. Seleccionamos las 15 especies más abundantes en la clase diametrica <10 dap para evaluar el porcentaje de sobrevivencia y la actividad de rebrote después de la quema. Cambios en la densidad de plántulas para las 15 especies más abundantes y para las 15 especies menos abundantes fueron analizadas utilizando el análisis de varianza de medición repetido (ANOVA). También, evaluamos cambios en la densidad de plántulas para tres especies de interés a nivel internacional con respecto a su conservación. En la flora común del bosque seco se encontró tres estrategias principales utilizadas por las especies para contender con los incendios forestales, estas fueron: resistores (baja mortalidad por el incendio), rebrotadores (rebrotamiento vigoroso), y reclutores (reclutamiento elevado pos-incendio). Mientras la sobrevivencia de especies en el bosque seco en general fue relativamente alta a la de especies de bosque húmedo tropical, las especies con menor sobrevivencia utilizaron el reclutamiento ó rebrotamiento como estrategia para persistir en la comunidad boscosa. El mecanismo de dispersión de semilla, particularmente la dispersión eólica, parece ser un factor importante en el éxito de reclutamiento después de la quema. Las quemas controladas produjeron un aumento significativo en la densidad de plántulas para dos de las especies de interés para la conservación: Guaiacum sanctum L. (Zygophyllaceae) y Swietenia humilis Zucc. (Meliaceae). Resultados de esta investigación sugieren que las especies comunes del bosque seco de Nicaragua son tolerantes al fuego. Por lo tanto, es merecido hacer más estudios de estas especies y su comportamiento ante la perturbación del fuego. [source]


Effect of protective filters on fire fighter respiratory health: field validation during prescribed burns

AMERICAN JOURNAL OF INDUSTRIAL MEDICINE, Issue 1 2009
Annemarie J.B.M. De Vos MPH, ICCert
Abstract Background Bushfire smoke contains a range of air toxics. To prevent inhalation of these toxics, fire fighters use respiratory equipment. Yet, little is known about the effectiveness of the equipment on the fire ground. Experimental trials in a smoke chamber demonstrated that, the particulate/organic vapor/formaldehyde (POVF) filter performed best under simulated conditions. This article reports on the field validation trials during prescribed burns in Western Australia. Methods Sixty-seven career fire fighters from the Fire and Emergency Services Authority of Western Australia were allocated one of the three types of filters. Spirometry, oximetry, self-reported symptom, and personal air sampling data were collected before, during and after exposure to bushfire smoke from prescribed burns. Results Declines in FEV1 and SaO2 were demonstrated after 60 and 120 min exposure. A significant higher number of participants in the P filter group reported increases in respiratory symptoms after the exposure. Air sampling inside the respirators demonstrated formaldehyde levels significantly higher in the P filter group compared to the POV and the POVF filter group. Conclusions The field validation trials during prescribed burns supported the findings from the controlled exposure trials in the smoke chamber. Testing the effectiveness of three types of different filters under bushfire smoke conditions in the field for up to 2 hr demonstrated that the P filter is ineffective in filtering out respiratory irritants. The performance of the POV and the POVF filter appears to be equally effective after 2 hr bushfire smoke exposure in the field. Am. J. Ind. Med. 52:76,87, 2009. © 2008 Wiley-Liss, Inc. [source]


Season of Burn Influences Fire Behavior and Fuel Consumption in Restored Shortleaf Pine,Grassland Communities

RESTORATION ECOLOGY, Issue 4 2002
Jeffrey C. Sparks
Abstract Pine forests of southeastern United States have been burned primarily in the dormant season to accomplish silvicultural objectives, but with increased emphasis on ecosystem restoration fires are now prescribed in other seasons. We observed fire behavior during both growing season and dormant season prescribed fires in shortleaf pine (Pinus echinata) stands managed as pine,grassland communities for the endangered Red-cockaded Woodpecker (Picoides borealis). Fuel beds for dormant season fires were characterized by lower amounts of live fuels, higher amounts of 1-hr time lag fuel and a greater total fuel load than growing season fires. Fuel consumption and percent of the total fuels consumed was greater in dormant season fires than in growing season fires. Fireline intensity, heat per unit area, reaction intensity, and rate of spread were greater in dormant season fires than in growing season fires. Lower fire intensity in growing season fires was possibly a function of lower amounts of 1-hr time lag fuels, higher amounts of live herbaceous fuels, and possibly a less porous fuel bed. Additionally, growing season fires had lower heat per unit area and reaction intensity and slower rates of spread. The Keetch-Byram drought index (KBDI) did not provide a good index for potential fire behavior on our drought-prone sandy loam soils. KBDI during growing season fires averaged over four times greater than during dormant season fires, but fire intensity was greater in dormant season fires. Low KBDI values may be misleading and give a false sense of security for dormant season fire prescriptions on sandy loam soils because the duff layer may dry more quickly as a result of inherent low water holding capacity. High KBDI values may result in prescribed burns being canceled because of conditions that are erroneously perceived to be outside the prescription window. We caution against over-reliance on KBDI as a determining factor for conducting prescribed burns on areas with sandy or sandy loam soils. [source]


Quantifying successional changes in response to forest disturbances

APPLIED VEGETATION SCIENCE, Issue 2 2008
Trent D. Penman
Question: Can dissimilarity measures of individual plots be used to forecast the driving factors among various anthropogenic disturbances influencing understorey successional changes? Location: Yambulla State Forest, south-eastern Australia (37°14'S, 149°38'E). Methods: Assessments of understorey vegetation communities were taken prior to anthropogenic disturbances and at three subsequent time periods representing a period of 15 years post-disturbance. Dissimilarities were calculated from the original assessment and modelled in a Bayesian framework to examine the influence of logging, number of prescribed burns and time. Results: All sites underwent significant changes over time independently of the imposed management regimes. Logging resulted in an immediate change in vegetation assemblage which decreased in the subsequent assessments. The number of prescribed fires brought greater change in the shrub vegetation assemblages, but less change in the ground species vegetation assemblages. Conclusions: The anthropogenic disturbances did have some role in the changes of vegetation assemblages but these were minimal. The ongoing changes appear to be a natural response to the last wildfire, which passed through the study area in 1973 (13 years prior to the study). Forest management practices should consider the influence of wildfire succession when planning for the conservation of biodiversity. [source]