Home About us Contact | |||
Pretreatment Technologies (pretreatment + technology)
Selected AbstractsMethodological analysis for determination of enzymatic digestibility of cellulosic materialsBIOTECHNOLOGY & BIOENGINEERING, Issue 1 2007Y.-H. Percival Zhang Abstract Accurate measurement of enzymatic cellulose digestibility (X) is important in evaluating the efficiency of lignocellulose pretreatment technologies, assessing the performance of reconstituted cellulase mixtures, and conducting economic analysis for biorefinery processes. We analyzed the effect of sugars contained in enzymes solutions, usually added as a preservative, and random measurement errors on the accuracy of X calculated by various methods. The analysis suggests that exogenous sugars at levels measured in several commercial enzyme preparations significantly bias the results and that this error should be minimized by accounting for these sugars in the calculation of X. Additionally, a method of calculating X equating the ratio of the soluble glucose equivalent in the liquid phase after hydrolysis to the sum of the soluble glucose equivalent in the liquid phase and the insoluble glucose equivalent in the residual solid after hydrolysis was found to be the most accurate, particularly at high conversion levels (>ca. 50%). Biotechnol. Bioeng. 2007;96: 188,194. © 2006 Wiley Periodicals, Inc. [source] Access of cellulase to cellulose and lignin for poplar solids produced by leading pretreatment technologiesBIOTECHNOLOGY PROGRESS, Issue 3 2009Rajeev Kumar Abstract Adsorption of cellulase on solids resulting from pretreatment of poplar wood by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid (DA), flowthrough (FT), lime, and sulfur dioxide (SO2) and pure Avicel glucan was measured at 4°C, as were adsorption and desorption of cellulase and adsorption of ,-glucosidase for lignin left after enzymatic digestion of the solids from these pretreatments. From this, Langmuir adsorption parameters, cellulose accessibility to cellulase, and the effectiveness of cellulase adsorbed on poplar solids were estimated, and the effect of delignification on cellulase effectiveness was determined. Furthermore, Avicel hydrolysis inhibition by enzymatic and acid lignin of poplar solids was studied. Flowthrough pretreated solids showed the highest maximum cellulase adsorption capacity (,solids = 195 mg/g solid) followed by dilute acid (,solids = 170.0 mg/g solid) and lime pretreated solids (,solids = 150.8 mg/g solid), whereas controlled pH pretreated solids had the lowest (,solids = 56 mg/g solid). Lime pretreated solids also had the highest cellulose accessibility (,cellulose = 241 mg/g cellulose) followed by FT and DA. AFEX lignin had the lowest cellulase adsorption capacity (,lignin = 57 mg/g lignin) followed by dilute acid lignin (,lignin = 74 mg/g lignin). AFEX lignin also had the lowest ,-glucosidase capacity (,lignin = 66.6 mg/g lignin), while lignin from SO2 (,lignin = 320 mg/g lignin) followed by dilute acid had the highest (301 mg/g lignin). Furthermore, SO2 followed by dilute acid pretreated solids gave the highest cellulase effectiveness, but delignification enhanced cellulase effectiveness more for high pH than low pH pretreatments, suggesting that lignin impedes access of enzymes to xylan more than to glucan, which in turn affects glucan accessibility. In addition, lignin from enzymatic digestion of AFEX and dilute acid pretreated solids inhibited Avicel hydrolysis less than ARP and flowthrough lignin, whereas acid lignin from unpretreated poplar inhibited enzymes the most. Irreversible binding of cellulase to lignin varied with pretreatment type and desorption method. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologiesBIOTECHNOLOGY PROGRESS, Issue 2 2009Charles E. Wyman Abstract Through a Biomass Refining Consortium for Applied Fundamentals and Innovation among Auburn University, Dartmouth College, Michigan State University, the National Renewable Energy Laboratory, Purdue University, Texas A&M University, the University of British Columbia, and the University of California at Riverside, leading pretreatment technologies based on ammonia fiber expansion, aqueous ammonia recycle, dilute sulfuric acid, lime, neutral pH, and sulfur dioxide were applied to a single source of poplar wood, and the remaining solids from each technology were hydrolyzed to sugars using the same enzymes. Identical analytical methods and a consistent material balance methodology were employed to develop comparative performance data for each combination of pretreatment and enzymes. Overall, compared to data with corn stover employed previously, the results showed that poplar was more recalcitrant to conversion to sugars and that sugar yields from the combined operations of pretreatment and enzymatic hydrolysis varied more among pretreatments. However, application of more severe pretreatment conditions gave good yields from sulfur dioxide and lime, and a recombinant yeast strain fermented the mixed stream of glucose and xylose sugars released by enzymatic hydrolysis of water washed solids from all pretreatments to ethanol with similarly high yields. An Agricultural and Industrial Advisory Board followed progress and helped steer the research to meet scientific and commercial needs. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologiesBIOTECHNOLOGY PROGRESS, Issue 2 2009Yulin Lu Abstract The inhibitory effects of furfural and acetic acid on the fermentation of xylose and glucose to ethanol in YEPDX medium by a recombinant Saccharomyces cerevisiae strain (LNH-ST 424A) were investigated. Initial furfural concentrations below 5 g/L caused negligible inhibition to glucose and xylose consumption rates in batch fermentations with high inoculum (4.5,6.0 g/L). At higher initial furfural concentrations (10,15 g/L) the inhibition became significant with xylose consumption rates especially affected. Interactive inhibition between acetic acid and pH were observed and quantified, and the results suggested the importance of conditioning the pH of hydrolysates for optimal fermentation performance. Poplar biomass pretreated by various CAFI processes (dilute acid, AFEX, ARP, SO2 -catalyzed steam explosion, and controlled-pH) under respective optimal conditions was enzymatically hydrolyzed, and the mixed sugar streams in the hydrolysates were fermented. The 5-hydroxymethyl furfural (HMF) and furfural concentrations were low in all hydrolysates and did not pose negative effects on fermentation. Maximum ethanol productivity showed that 0,6.2 g/L initial acetic acid does not substantially affect the ethanol fermentation with proper pH adjustment, confirming the results from rich media fermentations with reagent grade sugars. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source] |