pre-mRNA Splicing (pre-mrna + splicing)

Distribution by Scientific Domains


Selected Abstracts


Functional association of human Ki-1/57 with pre-mRNA splicing events

FEBS JOURNAL, Issue 14 2009
Gustavo C. Bressan
The cytoplasmic and nuclear protein Ki-1/57 was first identified in malignant cells from Hodgkin's lymphoma. Despite studies showing its phosphorylation, arginine methylation, and interaction with several regulatory proteins, the functional role of Ki-1/57 in human cells remains to be determined. Here, we investigated the relationship of Ki-1/57 with RNA functions. Through immunoprecipitation assays, we verified the association of Ki-1/57 with the endogenous splicing proteins hnRNPQ and SFRS9 in HeLa cell extracts. We also found that recombinant Ki-1/57 was able to bind to a poly-U RNA probe in electrophoretic mobility shift assays. In a classic splicing test, we showed that Ki-1/57 can modify the splicing site selection of the adenoviral E1A minigene in a dose-dependent manner. Further confocal and fluorescence microscopy analysis revealed the localization of enhanced green fluorescent protein,Ki-1/57 to nuclear bodies involved in RNA processing and or small nuclear ribonucleoprotein assembly, depending on the cellular methylation status and its N-terminal region. In summary, our findings suggest that Ki-1/57 is probably involved in cellular events related to RNA functions, such as pre-mRNA splicing. Structured digital abstract ,,MINT-7041074: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0915) with SF2P32 (uniprotkb:Q07021) by two hybrid (MI:0018) ,,MINT-7041232: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0915) with SFRS9 (uniprotkb:Q13242) by pull down (MI:0096) ,,MINT-7041203: P80-Coilin (uniprotkb:P38432) and Ki-1/57 (uniprotkb:Q5JVS0) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7041217: SMN (uniprotkb:Q16637) and Ki-1/57 (uniprotkb:Q5JVS0) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7041189: SC-35 (uniprotkb:Q01130) and Ki-1/57 (uniprotkb:Q5JVS0) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7041169: NPM (uniprotkb:P06748) and Ki-1/57 (uniprotkb:Q5JVS0) colocalize (MI:0403) by fluorescence microscopy (MI:0416) ,,MINT-7041249: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0915) with SFRS9 (uniprotkb:O60506) by pull down (MI:0096) ,,MINT-7041065: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0915) with SFRS9 (uniprotkb:Q13242) by two hybrid (MI:0018) ,,MINT-7041069: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0915) with YB1 (uniprotkb:P67809) by two hybrid (MI:0018) ,,MINT-7041079: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0915) with HNRPQ (uniprotkb:O60506) by two hybrid (MI:0018) ,,MINT-7041087: Ki-1/57 (uniprotkb:Q5JVS0) physically interacts (MI:0218) with HNRPQ3 (uniprotkb:O60506-1), HNRPQ2 (uniprotkb:O60506-2) and HNRPQ-1 (uniprotkb:O60506-3) by anti bait coimmunoprecipitation (MI:0006) [source]


XPC branch-point sequence mutations disrupt U2 snRNP binding, resulting in abnormal pre-mRNA splicing in xeroderma pigmentosum patients,

HUMAN MUTATION, Issue 2 2010
Sikandar G. Khan
Abstract Mutations in two branch-point sequences (BPS) in intron 3 of the XPC DNA repair gene affect pre-mRNA splicing in association with xeroderma pigmentosum (XP) with many skin cancers (XP101TMA) or no skin cancer (XP72TMA), respectively. To investigate the mechanism of these abnormalities we now report that transfection of minigenes with these mutations revealed abnormal XPC pre-mRNA splicing that mimicked pre-mRNA splicing in the patients' cells. DNA oligonucleotide-directed RNase H digestion demonstrated that mutations in these BPS disrupt U2 snRNP,BPS interaction. XP101TMA cells had no detectable XPC protein but XP72TMA had 29% of normal levels. A small amount of XPC protein was detected at sites of localized ultraviolet (UV)-damaged DNA in XP72TMA cells which then recruited other nucleotide excision repair (NER) proteins. In contrast, XP101TMA cells had no detectable recruitment of XPC or other NER proteins. Post-UV survival and photoproduct assays revealed greater reduction in DNA repair in XP101TMA cells than in XP72TMA. Thus mutations in XPC BPS resulted in disruption of U2 snRNP-BPS interaction leading to abnormal pre-mRNA splicing and reduced XPC protein. At the cellular level these changes were associated with features of reduced DNA repair including diminished NER protein recruitment, reduced post-UV survival and impaired photoproduct removal. Hum Mutat 30:1,9, 2009. Published 2009 Wiley-Liss, Inc. [source]


Classifying MLH1 and MSH2 variants using bioinformatic prediction, splicing assays, segregation, and tumor characteristics

HUMAN MUTATION, Issue 5 2009
Sven Arnold
Abstract Reliable methods for predicting functional consequences of variants in disease genes would be beneficial in the clinical setting. This study was undertaken to predict, and confirm in vitro, splicing aberrations associated with mismatch repair (MMR) variants identified in familial colon cancer patients. Six programs were used to predict the effect of 13 MLH1 and 6 MSH2 gene variants on pre-mRNA splicing. mRNA from cycloheximide-treated lymphoblastoid cell lines of variant carriers was screened for splicing aberrations. Tumors of variant carriers were tested for microsatellite instability and MMR protein expression. Variant segregation in families was assessed using Bayes factor causality analysis. Amino acid alterations were examined for evolutionary conservation and physicochemical properties. Splicing aberrations were detected for 10 variants, including a frameshift as a minor cDNA product, and altered ratio of known alternate splice products. Loss of splice sites was well predicted by splice-site prediction programs SpliceSiteFinder (90%) and NNSPLICE (90%), but consequence of splice site loss was less accurately predicted. No aberrations correlated with ESE predictions for the nine exonic variants studied. Seven of eight missense variants had normal splicing (88%), but only one was a substitution considered neutral from evolutionary/physicochemical analysis. Combined with information from tumor and segregation analysis, and literature review, 16 of 19 variants were considered clinically relevant. Bioinformatic tools for prediction of splicing aberrations need improvement before use without supporting studies to assess variant pathogenicity. Classification of mismatch repair gene variants is assisted by a comprehensive approach that includes in vitro, tumor pathology, clinical, and evolutionary conservation data. Hum Mutat 0, 1,14, 2009. © 2009 Wiley-Liss, Inc. [source]


Systematic evaluation of the effect of common SNPs on pre-mRNA splicing,

HUMAN MUTATION, Issue 4 2009
Abdou ElSharawy
Abstract The evolutionary and biomedical importance of differential mRNA splicing is well established. Numerous studies have assessed patterns of differential splicing in different genes and correlated these patterns to the genotypes for adjacent single-nucleotide polymorphisms (SNPs). Here, we have chosen a reverse approach and screened dbSNP for common SNPs at either canonical splice sites or exonic splice enhancers (ESEs) that would be classified as putatively splicing-relevant by bioinformatic tools. The 223 candidate SNPs retrieved from dbSNP were experimentally tested using a previously established panel of 92 matching DNAs and cDNAs. For each SNP, 16 cDNAs providing a balanced representation of the genotypes at the respective SNP were investigated by nested RT-PCR and subsequent sequencing. Putative allele-dependent splicing was verified by the cloning of PCR products. The positive predictive value of the bioinformatics tools turned out to be low, ranging from 0% for ESEfinder to 9% (in the case of acceptor-site SNPs) for a recently reported neural network. The results highlight the need for a better understanding of the sequence characteristics of functional splice-sites to improve our ability to predict in silico the splicing relevance of empirically observed DNA sequence variants. Hum Mutat 0, 1,9, 2009. © 2009 Wiley-Liss, Inc. [source]


Evaluation of in silico splice tools for decision-making in molecular diagnosis,

HUMAN MUTATION, Issue 7 2008
Claude Houdayer
Abstract It appears that all types of genomic nucleotide variations can be deleterious by affecting normal pre-mRNA splicing via disruption/creation of splice site consensus sequences. As it is neither pertinent nor realistic to perform functional testing for all of these variants, it is important to identify those that could lead to a splice defect in order to restrict transcript analyses to the most appropriate cases. Web-based tools designed to provide such predictions are available. We evaluated the performance of six of these tools (Splice Site Prediction by Neural Network [NNSplice], Splice-Site Finder [SSF], MaxEntScan [MES], Automated Splice-Site Analyses [ASSA], Exonic Splicing Enhancer [ESE] Finder, and Relative Enhancer and Silencer Classification by Unanimous Enrichment [RESCUE]-ESE) using 39 unrelated retinoblastoma patients carrying different RB1 variants (31 intronic and eight exonic). These 39 patients were screened for abnormal splicing using puromycin-treated cell lines and the results were compared to the predictions. As expected, 17 variants impacting canonical AG/GT splice sites were correctly predicted as deleterious. A total of 22 variations occurring at loosely defined positions (±60 nucleotides from an AG/GT site) led to a splice defect in 19 cases and 16 of them were classified as deleterious by at least one tool (84% sensitivity). In other words, three variants escaped in silico detection and the remaining three were correctly predicted as neutral. Overall our results suggest that a combination of complementary in silico tools is necessary to guide molecular geneticists (balance between the time and cost required by RNA analysis and the risk of missing a deleterious mutation) because the weaknesses of one in silico tool may be overcome by the results of another tool. Hum Mutat 29(7), 975,982, 2008. © 2008 Wiley-Liss, Inc. [source]


Phenotypic consequences of branch point substitutions,

HUMAN MUTATION, Issue 8 2006
Jana Královi
Abstract The branch point sequence (BPS) is a conserved splicing signal important for spliceosome assembly and lariat intron formation. BPS mutations may result in aberrant pre-mRNA splicing and genetic disorders, but their phenotypic consequences have been difficult to predict, largely due to a highly degenerate nature of the BPS consensus. Here, we have examined the splicing pattern of nine reporter pre-mRNAs that have previously been shown to give rise to human hereditary diseases as a result of single-nucleotide substitutions in the predicted BPS. Increased exon skipping and intron retention observed in vivo were recapitulated for each mutated pre-mRNA, but the reproducibility of cryptic splice site activation was lower. BP mutations in reporter pre-mRNAs frequently induced aberrant 3, splice sites and also activated a cryptic 5, splice site. Systematic mutagenesis of BP adenosines showed that in most pre-mRNAs, the expression of canonical transcripts was lower for BP transitions than BP transversions. Differential splicing outcome for transitions vs. transversions was abrogated or reduced if introns were truncated to 200 nt or less, suggesting that the nature of the BP residue is less critical for interactions across very short introns. Together, these results improve prediction of phenotypic consequences of point mutations upstream of splice acceptor sites and suggest that the overrepresentation of disease-causing adenosine-to-guanosine BP substitutions observed in Mendelian disorders is due to more profound defects of gene expression at the level of pre-mRNA splicing. Hum Mutat 27(8), 803,813, 2006. © 2006 WileyLiss, Inc. [source]


Proteomic analysis of the E2F1 response in p53-negative cancer cells: New aspects in the regulation of cell survival and death

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 21 2006
Zhenpeng Li
Abstract E2F1 is an essential transcription factor that regulates cell-cycle progression and apoptosis. Overexpression of E2F1 sensitizes neoplastic cells to apoptosis and leads to tumor growth suppression, making it an interesting target for anticancer therapy. Use of E2F1 as a therapeutic, however, requires a detailed knowledge of the mechanisms by which it controls cellular proliferation and apoptosis, and of other potential E2F1 activities. In this study, a differential proteome analysis was performed to identify proteins associated with E2F1 activity in inducible p53-deficient Saos-2ERE2F1 osteosarcoma cells. 2-DE revealed a distinct protein profile at 32,h after E2F1 activation. Thirty-three proteins were reproducibly identified as either up-regulated or down-regulated. Proteins were identified by MALDI-MS. They included hitherto unknown E2F1 target proteins of cytoskeletal origin, chaperones, enzymes, proteasomal proteins, and several heterogeneous nuclear ribonucleoproteins, suggesting its role in the ER-stress response, protein degradation, and modulation of pre-mRNA splicing. Protein analysis-derived results were verified by Western blot using representative protein candidates. Thirteen identified proteins were the products of genes known to be cancer related. Thus, proteome analysis provides new information about the complexity of E2F1 activities in human cancer cells that may be considered when using E2F1 as a drug. [source]


Inhibition of HIV-1 multiplication by a modified U7 snRNA inducing Tat and Rev exon skipping

THE JOURNAL OF GENE MEDICINE, Issue 5 2007
Maria B. Asparuhova
Abstract The HIV-1 regulatory proteins Tat and Rev are encoded by multiply spliced mRNAs that differ by the use of alternative 3' splice sites at the beginning of the internal exon. If these internal exons are skipped, the expression of these genes, and hence HIV-1 multiplication, should be inhibited. We have previously developed a strategy, based on antisense derivatives of U7 small nuclear RNA, that allows us to induce the skipping of an internal exon in virtually any gene. Here, we have successfully applied this approach to induce a partial skipping of the Tat, Rev (and Nef) internal exons. Three functional U7 constructs were subcloned into a lentiviral vector. Two of them strongly reduced the efficiency of lentiviral particle production compared to vectors carrying either no U7 insert or unrelated U7 cassettes. This defect could be partly or fully compensated by coexpressing Rev from an unspliced mRNA in the producing cell line. Upon stable transduction into CEM-SS or CEM T-lymphocytes, the most efficient of these constructs inhibits HIV-1 multiplication. Although the inhibition is not complete, it is more efficient in combination with another mechanism inhibiting HIV multiplication. Therefore, this new approach targeting HIV-1 regulatory genes at the level of pre-mRNA splicing, in combination with other antiviral strategies, may be a useful new tool in the fight against HIV/AIDS. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Towards a therapeutic inhibition of dystrophin exon 23 splicing in mdx mouse muscle induced by antisense oligoribonucleotides (splicomers): target sequence optimisation using oligonucleotide arrays

THE JOURNAL OF GENE MEDICINE, Issue 10 2004
Ian R. Graham
Abstract Background The activity of synthetic antisense oligonucleotides (splicomers) designed to block pre-mRNA splicing at specific exons has been demonstrated in a number of model systems, including constitutively spliced exons in mouse dystrophin RNA. Splicomer reagents directed to Duchenne muscular dystrophy (DMD) RNAs might thus circumvent nonsense or frame-shifting mutations, leading to therapeutic expression of partially functional dystrophin, as occurs in the milder, allelic (Becker) form of the disease (BMD). Methods Functional and hybridisation array screens have been used to select optimised splicomers directed to exon 23 of dystrophin mRNA which carries a nonsense mutation in the mdx mouse. Splicomers were transfected into cultured primary muscle cells, and dystrophin mRNA assessed for exon exclusion. Splicomers were also administered to the muscles of mdx mice. Results Oligonucleotide array analyses with dystrophin pre-mRNA probes revealed strong and highly specific hybridisation patterns spanning the exon 23/intron 23 boundary, indicating an open secondary structure conformation in this region of the RNA. Functional screening of splicomer arrays by direct analysis of exon 23 RNA splicing in mdx muscle cultures identified a subset of biologically active reagents which target sequence elements associated with the 5, splice site region of dystrophin intron 23; splicomer-mediated exclusion of exon 23 was specific and dose-responsive up to a level exceeding 50% of dystrophin mRNA, and Western blotting demonstrated de novo expression of dystrophin protein at 2,5% of wild-type levels. Direct intramuscular administration of optimised splicomer reagents in vivo resulted in the reappearance of sarcolemmal dystrophin immunoreactivity in > 30% of muscle fibres in the mdx mouse Conclusions These results suggest that correctly designed splicomers may have direct therapeutic value in vivo, not only for DMD, but also for a range of other genetic disorders. Copyright © 2004 John Wiley & Sons, Ltd. [source]


The role of the RNA-binding protein Sam68 in mammary tumourigenesis,

THE JOURNAL OF PATHOLOGY, Issue 3 2010
David J Elliott
Abstract The RNA binding protein Sam68 (Src- associated in mitosis 68 kD) is implicated in cell signalling, transcriptional regulation, pre-mRNA splicing, and is overexpressed and/or hyperphosphorylated in breast, prostate, and renal cancers. Sam68 has roles in normal breast development; however, a study by Song et al published in this issue of The Journal of Pathology reports overexpression of nuclear and cytoplasmic Sam68 protein in a large cohort of clinical breast tumours, implicating Sam68 as a potential prognostic indicator and target for therapy. In breast cancer cells, nuclear Sam68 protein might affect the expression of cancer-relevant genes and/or modulate exon splicing patterns in a dose-dependent manner. Sam68-regulated expression of alternative transcripts may help drive mammary tumourigenesis. The high levels of cytoplasmic Sam68 protein observed in breast cancer cells could also impact on cellular signalling pathways important for mammary tumour cell biology. Copyright © 2010 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Invited Commentary for Song L et al. Sam68 up-regulation correlates with, and its down-regulation inhibits, proliferation and tumourigenicity of breast cancer cells. Journal of Pathology, http://dx.doi.org/10.1002/path.2751 [source]


Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants

THE PLANT JOURNAL, Issue 5 2002
Javier Forment
Summary Searching for novel targets of salt toxicity in eukaryotic cells, we have screened an Arabidopsis thaliana cDNA library to isolate genes conferring increased tolerance to salt stress when expressed in the yeast Saccharomyces cerevisiae. Here we show that expression of the ,alternating arginine-rich' (or RS) domains of two different SR-like, putative splicing proteins from Arabidopsis allows yeast cells to tolerate higher lithium and sodium concentrations. Protection against salt stress appears to require the in vivo phosphorylation of these plant polypeptides, since the yeast SR protein kinase Sky1p, which was able to phosphorylate in vitro at least one of them, also proved to be essential for the observed salt tolerance phenotype. In addition, a clone encoding the U1A protein, a previously characterised Arabidopsis splicing factor, was also isolated in the screening. No significant decrease in the intracellular concentration of lithium was observed in yeast cells incubated in the presence of LiCl upon expression of any of the Arabidopsis proteins, suggesting that their effects are not mediated by the stimulation of ion transport. In support of the general significance of these data, we also show that the expression of the RS domain of one of the SR-like proteins in transgenic Arabidopsis plants increases their tolerance to LiCl and NaCl. These results point to an important role of pre-mRNA splicing and SR-like proteins in the salt tolerance of eukaryotic cells, offering a novel route to improve this important trait in crop plants. [source]


Human 18 kDa phosphotyrosine protein phosphatase (ACP1) polymorphism: studies of rare variants provide evidence that substitutions within or near alternatively spliced exons affect splicing result

ANNALS OF HUMAN GENETICS, Issue 2 2000
L. RUDBECK
The mammalian low molecular weight phosphotyrosine protein phosphatase is expressed as two distinct isoforms. The human ,fast' and ,slow' isoforms differ only in the sequence of an internal segment of 34 residues, and the ACP1 gene contains two adjacent exons (E3F and E3S) which encode these segments. We have previously suggested that the fast and slow isoforms are generated by mutually exclusive pre-mRNA splicing of E3F and E3S. The common alleles ACP1*A, *B and *C express the fast and slow isoforms in different ratios. The *A and *C alleles differ from *B by C , T transitions in E3S and E3F respectively. To test the idea that the fast:slow ratio is determined by nucleotide substitutions in the E3F-I3F-E3S region, four groups of rare ACP1 variants with unusual fast : slow ratios and the rare *E and *R alleles, expressing fast : slow ratios similar to *C and *B, respectively, were analysed. Gene segments of the I2-I3S region were amplified by PCR and analysed by SSCP and variant bands were excised and sequenced. For each of the rare isozymic variants one of six different nucleotide substitutions in E3F (nts+42, +85, +109, +110), I3F (nt+1) and I3S (nt+8) was observed. The *E and *R alleles showed C and B sequence, respectively, in accordance with the fast : slow ratio. The results support the hypothesis that the fast : slow ratio is constitutive. [source]


Molecular analysis of congenital goitres with hypothyroidism caused by defective thyroglobulin synthesis.

CLINICAL ENDOCRINOLOGY, Issue 1 2010
Identification of a novel c.7006C>T [p.R2317X] mutation, expression of minigenes containing nonsense mutations in exon
Summary Background, Thyroglobulin (TG) deficiency is an autosomal-recessive disorder that results in thyroid dyshormonogenesis. A number of distinct mutations have been identified as causing human hypothyroid goitre. Objectives, The purpose of this study was to identify and characterize new mutations in the TG gene in an attempt to increase the understanding of the genetic mechanism responsible for this disorder. A total of six patients from four nonconsanguineous families with marked impairment of TG synthesis were studied. Methods, Single-strand conformation polymorphism (SSCP) analysis, sequencing of DNA, genotyping, expression of chimeric minigenes and bioinformatic analysis were performed. Results, Four different inactivating TG mutations were identified: one novel mutation (c.7006C>T [p.R2317X]) and three previously reported (c.886C>T [p.R277X], c.6701C>A [p.A2215D] and c.6725G>A [p.R2223H]). Consequently, one patient carried a compound heterozygous for p.R2223H/p.R2317X mutations; two brothers showed a homozygous p.A2215D substitution and the remaining three patients, from two families with typical phenotype, had a single p.R277X mutated allele. We also showed functional evidences that premature stop codons inserted at different positions in exon 7, which disrupt exonic splicing enhancer (ESE) sequences, do not interfere with exon definition and processing. Conclusions, In this study, we have identified a novel nonsense mutation p.R2317X in the acetylcholinesterase homology domain of TG. We have also observed that nonsense mutations do not interfere with the pre-mRNA splicing of exon 7. The results are in accordance with previous observations confirming the genetic heterogeneity of TG defects. [source]