Home About us Contact | |||
Premature Termination Codon (premature + termination_codon)
Selected AbstractsRecessive dystrophic epidermolysis bullosa: Case of non-Hallopeau,Siemens variant with premature termination codons in both allelesTHE JOURNAL OF DERMATOLOGY, Issue 11 2006Nozomi YONEI ABSTRACT Dystrophic epidermolysis bullosa (DEB) is caused by mutations in the COL7A1 gene encoding collagen, the major component of anchoring fibrils. Premature termination codon (PTC) mutations in both alleles usually lead to the Hallopeau,Siemens variant that shows the most severe phenotype. We experienced a case of the non-Hallopeau,Siemens variant (nHS-RDEB), which had a mild clinical severity although it has PTC mutations in both alleles. Our patient was a compound heterozygote for a nonsense mutation (R669X) in exon 15 and a nonsense mutation (E2857X) in exon 116. But we confirmed the existence of some anchoring fibrils on electron micrograph. This suggested that a PTC close to the 3, end of COL7A1 does not completely abolish the collagen VII mRNA. We hypothesized that the truncated procollagen VII from the mutant allele with a nonsense mutation (E2857X) in exon 116 included two out of eight cysteines needed for disulfide bond formation, and hence a few functional anchoring fibrils could be formed. [source] A novel mutation in the last exon of ATRX in a patient with , -thalassemia myelodysplastic syndromeEUROPEAN JOURNAL OF HAEMATOLOGY, Issue 5 2006Daniel B. Costa Abstract:, We describe a patient with acquired alpha-thalassemia myelodysplastic syndrome (ATMDS). A previously healthy 66-year-old man presented with hemoglobin of 9.3 g/dL, mean corpuscular volume 59 fL, and a bone marrow aspirate with increased erythroid precursors and hypolobulated megakaryocytes. Hemoglobin H inclusions were seen in most red cells after 1% brilliant cresyl blue supravital stain of the peripheral blood. At the molecular level, we identified of a novel mutation in the most 3, exon of the ATRX gene (CGA,TGA substitution in codon 2407) resulting in a premature termination codon (p.R2407X). This case provides further evidence for a link between ATRX mutations and ATMDS, and suggests a possible role for the conserved Q-box element in ATRX function. [source] Mutation analysis in nephronophthisis using a combined approach of homozygosity mapping, CEL I endonuclease cleavage, and direct sequencing,HUMAN MUTATION, Issue 3 2008Edgar A. Otto Abstract Nephronophthisis (NPHP), an autosomal recessive kidney disease, is the most frequent genetic cause of chronic renal failure in the first three decades of life. Mutations in eight genes (NPHP1,8) have been identified. We here describe a combined approach for mutation screening of NPHP1, NPHP2, NPHP3, NPHP4, and NPHP5 in a worldwide cohort of 470 unrelated patients with NPHP. First, homozygous NPHP1 deletions were detected in 97 patients (21%) by multiplex PCR. Second, 25 patients with infantile NPHP were screened for mutations in inversin (NPHP2/INVS). We detected a novel compound heterozygous frameshift mutation (p.[Q485fs]+[R687fs]), and a homozygous nonsense mutation (p.R899X). Third, 37 patients presenting with NPHP and retinitis pigmentosa (Senior-Lřken syndrome [SLS]) were screened for NPHP5/IQCB1 mutations by direct sequencing. We discovered five different (three novel) homozygous premature termination codon (PTC) mutations (p.F142fsX; p.R461X; p.R489X; p.W444X; and c.488,1G>A). The remaining 366 patients were further investigated for mutations in NPHP1, NPHP3, and NPHP4. We applied a "homozygosity only" strategy and typed three highly polymorphic microsatellite markers at the respective loci. A total of 32, eight, and 14 patients showed homozygosity, and were screened by heteroduplex crude celery extract (CEL I) endonuclease digests. The sensitivity of CEL I was established as 92%, as it detected 73 out of 79 different known mutations simply on agarose gels. A total of 10 novel PTC mutations were found in NPHP1 (p.P186fs, p.R347X, p.V492fs, p.Y509X, and c.1884+1G>A), in NPHP3 (c.3812+2T>C and p.R1259X), and in NPHP4 (p.R59X, p.T1004fs, and p.V1091fs). The combined homozygosity mapping and CEL I endonuclease mutation analysis approach allowed us to identify rare mutations in a large cohort of patients at low cost. Hum Mutat 29(3), 418,426, 2008. © 2007 Wiley-Liss, Inc. [source] A novel mutation in the ATP2C1 gene is associated with Hailey,Hailey disease in a Chinese familyINTERNATIONAL JOURNAL OF DERMATOLOGY, Issue 1 2009Zhou Jiang Liu MD Background, A three-generation Chinese family with Hailey,Hailey disease (HHD) was identified and characterized. The proband developed HHD with severe recurrent blisters and crusted erosions involving the body folds. Skin biopsy studies showed epidermal hyperkeratosis and defects in cell-to-cell adhesion. Three other members in the family were also affected with HHD and had the same clinical manifestations. The purpose of this study was to identify the pathogenic gene or mutation in the family. Methods, All exons and exon,intron boundaries of ATP2C1 were polymerase chain reaction (PCR) amplified and sequenced with DNA samples from the proband. Restriction fragment length polymorphism (RFLP) analysis for the intron 23,exon 24 boundary of ATP2C1 was performed in all family members and in 100 normal control subjects. Results, A novel 2-bp deletion (c.2251delGT) was detected in exon 24 of the ATP2C1 gene. The mutation was present in the three other affected family members and in two asymptomatic young carriers, but not in the other normal family members or the 100 normal controls. The mutation resulted in a frameshift change and led to the formation of a premature termination codon (PTC) four amino acid residues downstream from the sixth transmembrane domain. Conclusions, Our results indicate that the novel c.2251delGT (p.V751fs) mutation in the ATP2C1 gene is responsible for HHD in this Chinese family. This study expands the spectrum of ATP2C1 mutations associated with HHD. [source] Compound heterozygosity in sibling patients with recessive dystrophic epidermolysis bullosa associated with a mild phenotypeINTERNATIONAL JOURNAL OF DERMATOLOGY, Issue 3 2006Y. Shibusawa MD We describe two cases of a 3-year-old Japanese boy and his 1-year-old sister presenting recessive dystrophic epidermolysis bullosa; a relatively mild phenotype. Blistering and scarring were limited to the acral region, and some fingernails and toenails were lost. PCR-RFLP and DNA sequencing analyses revealed compound heterozygotes for a splice-site mutation (6573 +1GtoC) and a nonsense mutation (E2857X) in the type VII collagen gene (COL7A1). Both mutations caused a premature termination codon (PTC). The mutation E2857X was located behind the candidate cleavage site within the NC-2 domain required for the assembly of anchoring fibrils. This PTC position may explain their mild phenotype. [source] A semi-dominant mutation in the ribosomal protein L10 gene suppresses the dwarf phenotype of the acl5 mutant in Arabidopsis thalianaTHE PLANT JOURNAL, Issue 6 2008Akihiro Imai Summary Disruption of the Arabidopsis thaliana ACAULIS5 (ACL5) gene, which has recently been shown to encode thermospermine synthase, results in a severe dwarf phenotype. A previous study showed that sac51-d, a dominant suppressor mutant of acl5-1, has a premature termination codon in an upstream open reading frame (ORF) of SAC51, which encodes a putative transcription factor, and suggested the involvement of upstream ORF-mediated translational control in ACL5 -dependent stem elongation. Here we report the identification of a gene responsible for sac52-d, another semi-dominant suppressor mutant of acl5-1. SAC52 encodes ribosomal protein L10 (RPL10A), which is highly conserved among eukaryotes and implicated in translational regulation. Transformation of acl5-1 mutants with a genomic fragment containing the sac52-d allele rescued the dwarf phenotype of acl5-1. GUS reporter activity under the control of a SAC51 promoter with its upstream ORF was higher in acl5-1 sac52-d than in acl5-1, suggesting that suppression of the acl5-1 phenotype by sac52-d is attributable, in part, to enhanced translation of certain transcripts including SAC51. We also found that a T-DNA insertion allele of SAC52/RPL10A causes lethality in the female gametophyte. [source] A novel deletion mutation in LIPH gene causes autosomal recessive hypotrichosis (LAH2)CLINICAL GENETICS, Issue 2 2008M Jelani Autosomal recessive hypotrichosis is a rare hereditary disorder characterized by sparse hair on scalp and rest of the body of affected subjects. Recently, three clinically similar autosomal recessive forms of hypotrichosis [localized autosomal recessive hypotrichosis (LAH)1], LAH2 and LAH3 have been mapped on chromosomes 18q12.1, 3q27.3, and 13q14.11-q21.32, respectively. For these three loci, two genes DSG4 for LAH1 and LIPH for LAH2 have been identified. To date, only five mutations in DSG4 and two in LIPH genes have been reported. In this study, we have ascertained two large unrelated consanguineous Pakistani families with autosomal recessive form of hypotrichosis. Affected individuals showed homozygosity to the microsatellite markers tightly linked to LIPH gene on chromosome 3q27. Sequence analysis of the gene in the affected subjects from both the families revealed a novel deletion mutation in exon 5 (c.659-660delTA) causing frameshift and downstream premature termination codon. All the three mutations identified in the LIPH gene, including the one in this study, are deletion mutations. [source] Novel mutations in the EXT1 gene in two consanguineous families affected with multiple hereditary exostoses (familial osteochondromatosis)CLINICAL GENETICS, Issue 2 2004M Faiyaz-Ul-Haque Multiple hereditary exostoses (HME) is an autosomal dominant developmental disorder exhibiting multiple osteocartilaginous bone tumors that generally arise near the ends of growing long bones. Here, we report two large consanguineous families from Pakistan, who display the typical features of HME. Affected individuals also show a previously unreported feature , bilateral overriding of single toes. Analysis using microsatellite markers for each of the known EXT loci, EXT1, EXT2, and EXT3 showed linkage to EXT1. In the first family, mutation analysis of the EXT1 gene revealed that affected individuals were heterozygous for an in-frame G-to-C transversion at the conserved splice donor site in intron 1. This mutation is predicted to disrupt splicing of the first intron and produce a frameshift that leads to a premature termination codon. In the second family, an insertion of an A in exon 8 is predicted to produce a frameshift at codon 555 followed by a premature termination, a further 10 codons downstream. In both families, an increased number of affected male subjects were observed. In affected females in family 2, phenotypic variability and incomplete penetrance were noted. [source] SALL1 truncated protein expression in Townes-Brocks syndrome leads to ectopic expression of downstream genes,,HUMAN MUTATION, Issue 9 2008Susan M. Kiefer Abstract Mutations in SALL1 lead to the dominant multiorgan congenital anomalies that define Townes-Brocks syndrome (TBS). The majority of these mutations result in premature termination codons that would be predicted to trigger nonsense-mediated decay (NMD) of mutant mRNA and cause haploinsufficiency. Our previous studies using a gene targeted mouse model (Sall1- ,Zn) suggested that TBS phenotypes are due to expression of a truncated mutant protein, not haploinsufficiency. In this report, we strengthen this hypothesis by showing that expression of the mutant protein alone in transgenic mice is sufficient to cause limb phenotypes that are characteristic of TBS patients. We prove that the same pathogenetic mechanism elucidated in mice is occurring in humans by demonstrating that truncated SALL1 protein is expressed in cells derived from a TBS patient. TBS mutant protein is capable of dominant negative activity that results in ectopic activation of two downstream genes, Nppa and Shox2, in the developing heart and limb. We propose a model for the pathogenesis of TBS in which truncated Sall1 protein causes derepression of Sall-responsive target genes. Hum Mutat 0,1,8, 2008. Published 2008 Wiley-Liss, Inc. [source] Expression of the muscle glycogen phosphorylase gene in patients with McArdle disease: the role of nonsense-mediated mRNA decay,HUMAN MUTATION, Issue 2 2008Gisela Nogales-Gadea Abstract Nearly 35% of all mutations identified in the muscle glycogen phosphorylase gene (PYGM) in patients with McArdle disease result in premature termination codons (PTCs), particularly the p.R50X mutation. The latter accounts for more than 50% of the mutated alleles in most Caucasian patient populations. Mutations resulting in PTC could trigger the degradation of mRNA through a mechanism known as nonsense mediated decay (NMD). To investigate if NMD affects the levels of transcripts containing PYGM mutations, 28 Spanish patients with McArdle disease, harboring 17 different mutations with PTCs in 77% of their alleles, were studied. Transcripts levels of PYGM were measured and sequenced. We assessed that 92% of patients showed NMD. The most frequent mutation (p.R50X) elicited decay in all the genotypes tested. Other PTC producing mutations resulting in NMD were: p.L5VfsX22, p.Q73HfsX7, p.E125X, p.N134KfsX161, p.W388SfsX34, p.R491AfsX7, and p.D534VfsX5. Located in the last exon, the mutation p.E797VfsX19 was not affected by NMD. Missense mutations did not appear to be affected by NMD. In the cDNA sequences they appeared as homozygous, despite being heterozygous in the genomic DNA sequences. Exceptions to the rules governing NMD were found in the mutations p.A704,V and p.K754NfsX49. Hum Mutat 29(2), 277,283, 2008. © 2007 Wiley-Liss, Inc. [source] Mutation screening of the fibrillin-1 (FBN1) gene in 76 unrelated patients with Marfan syndrome or Marfanoid features leads to the identification of 11 novel and three previously reported mutations,,HUMAN MUTATION, Issue 5 2002Kathrin Rommel Abstract Mutations in the gene encoding fibrillin-1 (FBN1) cause Marfan syndrome (MFS) and other related connective tissue disorders. In this study we performed SSCP to analyze all 65 exons of the FBN1 gene in 76 patients presenting with classical MFS or related phenotypes. We report 7 missense mutations, 3 splice site alterations, one indel mutation, one nonsense mutation and two mutations causing frameshifts: a 16bp deletion and a single nucleotide insertion. 5 of the missense mutations (Y1101C, C1806Y, T1908I, G1919D, C2251R) occur in calcium-binding Epidermal Growth Factor-like (EGFcb) domains of exons 26, 43, 46 and 55, respectively. One missense mutation (V449I) substitutes a valine residue in the non-calcium-binding epidermal growth factor like domain (EGFncb) of exon 11. One missense mutation (G880S) affects the "hybrid" motif in exon 21 by replacing glycine to serine. The 3 splice site mutations detected are: IVS1,1G>A in intron 1, IVS38-1G>A in intron 38 and IVS46+5G>A in intron 46. C628delinsK was identified in exon 15 leading to the substitution of a conserved cysteine residue. Furthermore two frameshift mutations were found in exon 15 (1904-1919del ) and exon 63 (8025insC) leading to premature termination codons (PTCs) in exon 17 and 64 respectively. Finally we identified a nonsense mutation (R429X) located in the proline rich domain in exon 10 of the FBN1 gene. Y1101C, IVS46+5G>A and R429X have been reported before. © 2002 Wiley-Liss, Inc. [source] Recessive dystrophic epidermolysis bullosa: Case of non-Hallopeau,Siemens variant with premature termination codons in both allelesTHE JOURNAL OF DERMATOLOGY, Issue 11 2006Nozomi YONEI ABSTRACT Dystrophic epidermolysis bullosa (DEB) is caused by mutations in the COL7A1 gene encoding collagen, the major component of anchoring fibrils. Premature termination codon (PTC) mutations in both alleles usually lead to the Hallopeau,Siemens variant that shows the most severe phenotype. We experienced a case of the non-Hallopeau,Siemens variant (nHS-RDEB), which had a mild clinical severity although it has PTC mutations in both alleles. Our patient was a compound heterozygote for a nonsense mutation (R669X) in exon 15 and a nonsense mutation (E2857X) in exon 116. But we confirmed the existence of some anchoring fibrils on electron micrograph. This suggested that a PTC close to the 3, end of COL7A1 does not completely abolish the collagen VII mRNA. We hypothesized that the truncated procollagen VII from the mutant allele with a nonsense mutation (E2857X) in exon 116 included two out of eight cysteines needed for disulfide bond formation, and hence a few functional anchoring fibrils could be formed. [source] Drug-induced readthrough of premature stop codons leads to the stabilization of laminin ,2 chain mRNA in CMD myotubesTHE JOURNAL OF GENE MEDICINE, Issue 2 2008Valérie Allamand Abstract Background The most common form of congenital muscular dystrophy is caused by a deficiency in the ,2 chain of laminin-211, a protein of the extracellular matrix. A wide variety of mutations, including 20 to 30% of nonsense mutations, have been identified in the corresponding gene, LAMA2. A promising approach for the treatment of genetic disorders due to premature termination codons (PTCs) is the use of drugs to force stop codon readthrough. Methods Here, we analyzed the effects of two compounds on a PTC in the LAMA2 gene that targets the mRNA to nonsense-mediated RNA decay, in vitro using a dual reporter assay, as well as ex vivo in patient-derived myotubes. Results We first showed that both gentamicin and negamycin promote significant readthrough of this PTC. We then demonstrated that the mutant mRNAs were strongly stabilized in patient-derived myotubes after administration of negamycin, but not gentamicin. Nevertheless, neither treatment allowed re-expression of the laminin ,2-chain protein, pointing to problems that may have arisen at the translational or post-translational levels. Conclusions Taken together, our results emphasize that achievement of a clinical benefit upon treatment with novel readthrough-inducing agents would require several favourable conditions including PTC nucleotide context, intrinsic and induced stability of mRNA and correct synthesis of a full-length active protein. Copyright © 2007 John Wiley & Sons, Ltd. [source] |