Predictive Understanding (predictive + understanding)

Distribution by Scientific Domains

Selected Abstracts

Towards a predictive understanding of belowground process responses to climate change: have we moved any closer?

Elise Pendall
Summary 1Belowground processes, including root production and exudation, microbial activity and community dynamics, and biogeochemical cycling interact to help regulate climate change. Feedbacks associated with these processes, such as warming-enhanced decomposition rates, give rise to major uncertainties in predictions of future climate. 2Uncertainties associated with these processes are more likely to be reduced if two key challenges can be met: increasing interdisciplinarity among researchers, and measuring belowground ecosystem structure and function at relevant spatial and temporal scales. For instance, recognizing the relationship between belowground primary production and soil respiration enhances modelling of global-scale C cycle temperature responses. At the opposite end of the spectrum, applying genomic techniques at the scale of microns improves mechanistic understanding of root,microbe interactions. 3Progress has been made in understanding interactions of belowground processes with climate change, although challenges remain. We highlight some of these advances and provide directions for key research needs in this Special Feature of Functional Ecology, which results from a symposium that was convened at the Soil Science Society of America National Meeting in November, 2006. [source]

Hydrologic Connectivity and the Contribution of Stream Headwaters to Ecological Integrity at Regional Scales,

Mary C. Freeman
Abstract:, Cumulatively, headwater streams contribute to maintaining hydrologic connectivity and ecosystem integrity at regional scales. Hydrologic connectivity is the water-mediated transport of matter, energy and organisms within or between elements of the hydrologic cycle. Headwater streams compose over two-thirds of total stream length in a typical river drainage and directly connect the upland and riparian landscape to the rest of the stream ecosystem. Altering headwater streams, e.g., by channelization, diversion through pipes, impoundment and burial, modifies fluxes between uplands and downstream river segments and eliminates distinctive habitats. The large-scale ecological effects of altering headwaters are amplified by land uses that alter runoff and nutrient loads to streams, and by widespread dam construction on larger rivers (which frequently leaves free-flowing upstream portions of river systems essential to sustaining aquatic biodiversity). We discuss three examples of large-scale consequences of cumulative headwater alteration. Downstream eutrophication and coastal hypoxia result, in part, from agricultural practices that alter headwaters and wetlands while increasing nutrient runoff. Extensive headwater alteration is also expected to lower secondary productivity of river systems by reducing stream-system length and trophic subsidies to downstream river segments, affecting aquatic communities and terrestrial wildlife that utilize aquatic resources. Reduced viability of freshwater biota may occur with cumulative headwater alteration, including for species that occupy a range of stream sizes but for which headwater streams diversify the network of interconnected populations or enhance survival for particular life stages. Developing a more predictive understanding of ecological patterns that may emerge on regional scales as a result of headwater alterations will require studies focused on components and pathways that connect headwaters to river, coastal and terrestrial ecosystems. Linkages between headwaters and downstream ecosystems cannot be discounted when addressing large-scale issues such as hypoxia in the Gulf of Mexico and global losses of biodiversity. [source]

Synthesis and Structure,Efficiency Relations of 1,3,5-Benzenetrisamides as Nucleating Agents and Clarifiers for Isotactic Poly(propylene),

Frank Abraham
Abstract This paper presents the synthesis and properties of 1,3,5-benzenetrisamides with a particular focus on structure-efficiency relationships of nucleation and optical property enhancement of isotactic poly(propylene) (i -PP). A family of twenty 1,3,5-benzenetrisamide derivatives was synthesized, in which the direction of the amide linkage between the core and the peripheral substituents, as well as their length (C-3 to C-6) and flexibility were systematically varied. Dissolution- and recrystallization temperatures of the additives in the polymer melt, the crystallization temperature of i -PP, and the optical properties clarity and haze were determined in the additive concentration range from 200 to 2,500,ppm. Within the reported series of compounds, few exhibited very good nucleating and clarification abilities, only one with outstanding characteristics, whereas other, very closely related derivatives were found to be incapable to nucleate or clarify i -PP, although, intriguingly, most are structural isomers. We conclude that it is the particular chemical structure of the additive that determines its crystallization/self-assembly process, and, therewith, the structure of the heterogeneous nuclei, and at a higher hierarchical level the morphology of the poly(propylene) solid state and its final properties; and, hence, that a predictive understanding is still elusive. [source]

Can Functional Traits Predict Ecological Interactions?

BIOTROPICA, Issue 3 2010
A Case Study Using Rain forest Frugivores, Plants in Australia
ABSTRACT In rain forest, the large numbers of species of fleshy-fruited plants and frugivorous animals result in a large number of potential fruit,frugivore interactions, which are challenging to survey in the field. Yet, knowledge of these relationships is needed to predict consequences of changes in the frugivore assemblage for seed dispersal. In the absence of comprehensive dietary information, it may be possible to delineate between frugivores that disperse different plants using ,functional traits,' or morphological and behavioral attributes of frugivores that interact with differences in salient characteristics of plant species. Here we use data on the consumption of 244 Australian rain forest plant species by 38 bird species to test for associations between patterns of frugivory and birds': (1) degree of frugivory, (2) gape width, and (3) seed treatment (seed crushing or seed dispersing). Degree of frugivory and gape width explain 74 percent of the variation in the sizes of fruits consumed by frugivorous birds. Among birds that consume a substantial dietary proportion of fruit, birds with wider gapes consume larger fruits. In contrast, this relationship was not shown by birds for which fruit is only a minor dietary component. Degree of frugivory and gape width, together with seed treatment, also strongly predict the overall taxonomic composition and diversity of plants consumed by bird species. Functional classifications of frugivore species may prove useful in developing a predictive understanding of fruit,frugivore interactions in other rain forest regions where detailed dietary information is not available for most frugivores. [source]