Precursor Peptide (precursor + peptide)

Distribution by Scientific Domains


Selected Abstracts


Copeptin: A Biomarker of Cardiovascular and Renal Function

CONGESTIVE HEART FAILURE, Issue 2010
Nils G. Morgenthaler MD
Congest Heart Fail. 2010;16(4)(suppl 1):S37,S44. ©2010 Wiley Periodicals, Inc. Arginine vasopressin (AVP or antidiuretic hormone) is one of the key hormones in the human body responsible for a variety of cardiovascular and renal functions. It has so far escaped introduction into the routine clinical laboratory due to technical difficulties and preanalytical errors. Copeptin, the C-terminal part of the AVP precursor peptide, was found to be a stable and sensitive surrogate marker for AVP release. Copeptin behaves in a similar manner to mature AVP in the circulation, with respect to osmotic stimuli and hypotension. During the past years, copeptin measurement has been shown to be of interest in a variety of clinical indications, including cardiovascular diseases such as heart failure, myocardial infarction, and stroke. This review summarizes the recent progress on the diagnostic use of copeptin in cardiovascular and renal diseases and discusses the potential use of copeptin measurement in the context of therapeutic interventions with vasopressin receptor antagonists. [source]


The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 6 2009
Scott J. Geromanos
Abstract The detection, correlation, and comparison of peptide and product ions from a data independent LC-MS acquisition strategy with data dependent LC-MS/MS is described. The data independent mode of acquisition differs from an LC-MS/MS data acquisition since no ion transmission window is applied with the first mass analyzer prior to collision induced disassociation. Alternating the energy applied to the collision cell, between low and elevated energy, on a scan-to-scan basis, provides accurate mass precursor and associated product ion spectra from every ion above the LOD of the mass spectrometer. The method therefore provides a near 100% duty cycle, with an inherent increase in signal intensity due to the fact that both precursor and product ion data are collected on all isotopes of every charge-state across the entire chromatographic peak width. The correlation of product to precursor ions, after deconvolution, is achieved by using reconstructed retention time apices and chromatographic peak shapes. Presented are the results from the comparison of a simple four protein mixture, in the presence and absence of an enzymatically digested protein extract from Escherichia coli. The samples were run in triplicate by both data dependant analysis (DDA) LC-MS/MS and data-independent, alternate scanning LC-MS. The detection and identification of precursor and product ions from the combined DDA search results of the four protein mixture were used for comparison to all other data. Each individual set of data-independent LC-MS data provides a more comprehensive set of detected ions than the combined peptide identifications from the DDA LC-MS/MS experiments. In the presence of the complex E. coli background, over 90% of the monoisotopic masses from the combined LC-MS/MS identifications were detected at the appropriate retention time. Moreover, the fragmentation pattern and number of associated elevated energy product ions in each replicate experiment was found to be very similar to the DDA identifications. In the case of the corresponding individual DDA LC-MS/MS experiment, 43% of the possible detectable peptides of interest were identified. The presented data illustrates that the time-aligned data from data-independent alternate scanning LC-MS experiments is highly comparable to the data obtained via DDA. The obtained information can therefore be effectively and correctly deconvolved to correlate product ions with parent precursor ions. The ability to generate precursor-product ion tables from this information and subsequently identify the correct parent precursor peptide will be illustrated in a companion manuscript. [source]


Recurring main-chain anion-binding motifs in short polypeptides: nests

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 11 2004
E. James Milner-White
A novel tripeptide motif called a nest has recently been described in proteins with the function of binding anionic, or partially anionic, atoms such as carbonyl O atoms. In the present work, a search for nests in small polypeptides stored in the Cambridge Structural Database is reported. 37 unique examples were found: over half form part of hydrogen-bond arrangements resembling those in proteins, such as Schellman/paperclip loop motifs, various types of ,-turn and Asx-turns or Ser/Thr-turns, while a third are in novel situations, some involving binding to anionic groups from other molecules within the crystal complex. An example is the antibiotic vancomycin, which incorporates a prominent nest forming part of a peptide-binding site. This nest binds the carboxylate of the C-terminal d -alanine of the bacterial cell-wall precursor peptide, thereby inhibiting the final step of bacterial cell-wall synthesis. As in proteins, a number of nests occur in short peptides with an alternating glycine/l -amino-acid sequence but, uniquely to non-ribosomally synthesized short peptides, several nests within them are constructed from alternating d - and l -amino acids, and such sequences seem to specially favour nests. [source]


The biology of lantibiotics from the lacticin 481 group is coming of age

FEMS MICROBIOLOGY REVIEWS, Issue 2 2007
Alain Dufour
Abstract Lantibiotics are antimicrobial peptides from the bacteriocin family, secreted by Gram-positive bacteria. These peptides differ from other bacteriocins by the presence of (methyl)lanthionine residues, which result from enzymatic modification of precursor peptides encoded by structural genes. Several groups of lantibiotics have been distinguished, the largest of which is the lacticin 481 group. This group consists of at least 16 members, including lacticin 481, streptococcin A-FF22, mutacin II, nukacin ISK-1, and salivaricins. We present the first review devoted to this lantibiotic group, knowledge of which has increased significantly within the last few years. After updating the group composition and defining the common properties of these lantibiotics, we highlight the most recent developments. The latter concern: transcriptional regulation of the lantibiotic genes; understanding the biosynthetic machinery, in particular the ability to perform in vitro prepeptide maturation; characterization of a novel type of immunity protein; and broad application possibilities. This group differs in many aspects from the best known lantibiotic group (nisin group), but shares properties with less-studied groups such as the mersacidin, cytolysin and lactocin S groups. [source]


Novel ,-conotoxins identified by gene sequencing from cone snails native to Hainan, and their sequence diversity

JOURNAL OF PEPTIDE SCIENCE, Issue 11 2006
Sulan Luo
Abstract Conotoxins (CTX) from the venom of marine cone snails (genus Conus) represent large families of proteins, which show a similar precursor organization with surprisingly conserved signal sequence of the precursor peptides, but highly diverse pharmacological activities. By using the conserved sequences found within the genes that encode the ,-conotoxin precursors, a technique based on RT-PCR was used to identify, respectively, two novel peptides (LiC22, LeD2) from the two worm-hunting Conus species Conus lividus, and Conus litteratus, and one novel peptide (TeA21) from the snail-hunting Conus species Conus textile, all native to Hainan in China. The three peptides share an ,4/7 subfamily ,-conotoxins common cysteine pattern (CCX4CX7C, two disulfide bonds), which are competitive antagonists of nicotinic acetylcholine receptor (nAChRs). The cDNA of LiC22N encodes a precursor of 40 residues, including a propeptide of 19 residues and a mature peptide of 21 residues. The cDNA of LeD2N encodes a precursor of 41 residues, including a propeptide of 21 residues and a mature peptide of 16 residues with three additional Gly residues. The cDNA of TeA21N encodes a precursor of 38 residues, including a propeptide of 20 residues and a mature peptide of 17 residues with an additional residue Gly. The additional residue Gly of LeD2N and TeA21N is a prerequisite for the amidation of the preceding C -terminal Cys. All three sequences are processed at the common signal site -X-Arg- immediately before the mature peptide sequences. The properties of the ,4/7 conotoxins known so far were discussed in detail. Phylogenetic analysis of the new conotoxins in the present study and the published homologue of ,4/7 conotoxins from the other Conus species were performed systematically. Patterns of sequence divergence for the three regions of signal, proregion, and mature peptides, both nucleotide acids and residue substitutions in DNA and peptide levels, as well as Cys codon usage were analyzed, which suggest how these separate branches originated. Percent identities of the DNA and amino acid sequences of the signal region exhibited high conservation, whereas the sequences of the mature peptides ranged from almost identical to highly divergent between inter- and intra-species. Notably, the diversity of the proregion was also high, with an intermediate percentage of divergence between that observed in the signal and in the toxin regions. The data presented are new and are of importance, and should attract the interest of researchers in this field. The elucidated cDNAs of these toxins will facilitate a better understanding of the relationship of their structure and function, as well as the process of their evolutionary relationships. Copyright © 2006 European Peptide Society and John Wiley & Sons, Ltd. [source]


Maturation of the lantibiotic subtilin: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to monitor precursors and their proteolytic processing in crude bacterial cultures

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 2 2002
Torsten Stein
Bacillus subtilis synthesizes the lanthionine containing 32-amino-acid peptide antibiotic (lanti-biotic) subtilin from a ribosomally generated 56-amino-acid precursor pre-propeptide by extensive posttranslational modifications. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was used to monitor the production of matured subtilin within crude samples taken from B. subtilis culture media without prior fractionation. The processing reaction of subtilin was blocked with the serine protease inhibitor phenylmethylsulfonyl fluoride and different subtilin precursor peptides in the molecular mass range up to 6220 were observed. Two of these species were isolated by reversed-phase high-performance liquid chromatography (HPLC) and structurally analyzed by post-source decay MALDI-TOFMS. We provide evidence that the precursor species comprise the posttranslational modified C-terminal part of subtilin to which leader peptide moieties with different chain lengths are attached. These antimicrobial-inactive species could be processed to antibiotic-active subtilin by incubation with culture media of different subtilin-nonproducing B. subtilis strains as indicated by a combination of antimicrobial growth assays and MALDI-TOFMS analyses. These achievements are strong evidence for the sensitivity of MALDI-TOFMS methodology that allows straightforward investigations of analytes even in complex mixtures without time-consuming sample preparations. Copyright © 2001 John Wiley & Sons, Ltd. [source]