Precise Molecular Mechanism (precise + molecular_mechanism)

Distribution by Scientific Domains


Selected Abstracts


The first CH domain of affixin activates Cdc42 and Rac1 through ,PIX, a Cdc42/Rac1-specific guanine nucleotide exchanging factor

GENES TO CELLS, Issue 3 2004
Wataru Mishima
Rho GTPases, Cdc42 and Rac1, play pivotal roles in cell migration by efficiently integrating cell-substrate adhesion and actin polymerization. Although it has been suggested that integrins stimulate these Rho GTPases via some of integrin binding proteins such as focal adhesion kinase (FAK) and paxillin, the precise molecular mechanism is largely unknown. In this study, we showed that the over-expression of RP1 corresponding to the first CH domain (CH1) of affixin, an integrin-linked kinase (ILK)-binding protein, induced a significant actin reorganization in MDCK cells by activating Cdc42/Rac1. Affixin full length and RP1 co-immunoprecipitated with ,PIX, a Cdc42/Rac1-specific guanine nucleotide exchanging factor (GEF), and they co-localized at the tips of lamellipodia in motile cells. The involvement of ,PIX in the RP1-induced Cdc42 activation was demonstrated by the significant dominant negative effect of a point mutant of ,PIX, ,PIX (L383R, L384S), lacking GEF activity. Our data strongly support that ILK and affixin provide a novel signalling pathway that links integrin signalling to Cdc42/Rac1 activation. [source]


Sustained calpain activation associated with lysosomal rupture executes necrosis of the postischemic CA1 neurons in primates

HIPPOCAMPUS, Issue 7 2003
Tetsumori Yamashima
Abstract Because of the paucity of primate experimental models, the precise molecular mechanism of ischemic neuronal death remains unknown in humans. This study focused on nonhuman primates to determine which cascade necrosis or apoptosis is predominantly involved in the development of delayed (day 5) neuronal death in the hippocampal CA1 sector undergoing 20 min ischemia. We investigated expression, activation, and/or translocation of ,-calpain, lysosome-associated membrane protein-1 (LAMP-1), caspase-3, and caspase-activated DNase (CAD), as well as morphology of the postischemic CA1 neurons and DNA electrophoresis pattern. Immunoblotting showed sustained (immediately after ischemia until day 5) and maximal (day 3) activation of ,-calpain. The immunoreactivity of activated ,-calpain became remarkable as coarse granules at lysosomes on day 2, while it translocated throughout the perikarya on day 3. The immunoreactivity of LAMP-1 also showed a dynamic and concomitant translocation that was maximal on days 2,3, indicating calpain-mediated disruption of the lysosomal membrane after ischemia. In contrast, immunoblotting demonstrated essentially no increase in the activated caspase-3 at any time points after ischemia, despite upregulation of pro-caspase-3. Although expression of CAD was slightly upregulated on day 1 or 2, or both, it was much less compared with lymph node or intestine tissues. Furthermore, light and electron microscopy showed eosinophilic coagulation necrosis and membrane disruption without apoptotic body formation, while DNA electrophoresis did not show a ladder pattern, but rather a smear pattern. Sustained calpain activation and the resultant lysosomal rupture, rather than CAD-mediated apoptosis, may cause ischemic neuronal necrosis in primates. © 2003 Wiley-Liss, Inc. [source]


Transcriptome dissection of gastric cancer: Identification of novel diagnostic and therapeutic targets from pathology specimens

PATHOLOGY INTERNATIONAL, Issue 3 2009
Wataru Yasui
Gastric cancer is the fourth most common malignancy in the world, and mortality due to gastric cancer is second only to that from lung cancer. ,Transcriptome dissection' is a detailed analysis of the entire expressed transcripts from a cancer, for the purpose of understanding the precise molecular mechanism of pathogenesis. Serial analysis of gene expression (SAGE) is a suitable technique for performing transcriptome dissection. Gastric cancers of different stages and histology were analyzed on SAGE, and one of the largest gastric cancer SAGE libraries in the world was created (GEO accession number GSE 545). Through SAGE, many candidate genes have been identified as potential diagnostic and therapeutic targets for the treatment of gastric cancer. Regenerating islet-derived family, member 4 (Reg IV) participated in 5-fluorouracil (5-FU) resistance and peritoneal metastasis, and its expression was associated with an intestinal phenotype of gastric cancer and with endocrine differentiation. GW112 expression correlated with advanced tumor stage. Measurement of Reg IV and GW112 levels in sera indicated a sensitivity of 57% for detection of cancer. SPC18 participated in tumor growth and invasion through transforming tumor growth factor-, upregulation. Palate, lung, and nasal epithelium carcinoma-associated protein (PLUNC) was a useful marker for gastric hepatoid adenocarcinoma. Expression of SOX9, HOXA10, CDH17, and loss of claudin-18 expression were associated with an intestinal phenotype of gastric cancer. Information obtained from transcriptome dissection greatly contributes to diagnosis and treatment of gastric cancer. [source]


Purification, crystallization and preliminary X-ray diffraction of a proteolytic fragment of PDK1 containing the pleckstrin homology domain

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 2 2004
David Komander
3-Phosphoinositide-dependent protein kinase-1 (PDK1) is a Ser/Thr kinase with an essential role in insulin and growth-factor signalling. PDK1 activity towards protein kinase B (PKB) is partially regulated by its pleckstrin homology (PH) domain, which preferentially binds to 3-phosphoinositides. However, the precise molecular mechanism of this regulation is not well understood. Here, the cloning, purification and crystallization of a 150-amino-acid C-terminal region of PDK1 containing the PH domain is reported. A crystal of the PDK1 PH domain grown in the presence of inositol 1,3,4,5-tetrakisphosphate and derivatized with AuCN diffracted to 1.5,Å at a synchrotron source. Diffraction data collected near the Au edge resulted in an anomalous Patterson map with a 30, peak. [source]


Brain superoxide as a key regulator of the cardiovascular response to emotional stress in rabbits

EXPERIMENTAL PHYSIOLOGY, Issue 3 2007
Dmitry N. Mayorov
Cardiovascular reactivity, an abrupt increase in blood pressure and heart rate in response to emotional stress, is a risk factor for hypertension and heart disease. Brain angiotensin II (Ang II) type 1 (AT1) receptor is increasingly recognized as an important regulator of cardiovascular reactivity. Given that a wide variety of AT1 receptor signalling pathways exists in neurones, the precise molecular mechanisms that underlie central cardiovascular actions of Ang II during emotional stress are yet to be determined. Growing evidence, however, indicates that reactive oxygen species, and in particular superoxide (·O2,), are important intracellular messengers of many actions of brain Ang II. In particular, studies employing microinjection of ·O2, scavengers directly into the rostral ventrolateral medulla (RVLM) and dorsomedial hypothalamus of rabbits have shown that the activation of AT1 receptor,·O2, signalling is required for full manifestation of the cardiovascular response to emotional stress. This role of ·O2, appears to be highly specific, because ·O2, scavengers in the RVLM do not alter the sympathoexcitatory response to baroreceptor unloading or sciatic nerve stimulation. The subcellular mechanisms for the stress-induced ·O2, production are likely to include the activation of NADPH oxidase and are essentially independent of nitric oxide. This review summarizes current knowledge of redox-sensitive signalling mechanisms in the brain that regulate cardiovascular effects of stress. Additionally, it presents initial evidence that ·O2, may be less important in the activation of central pressor pathways mediating cardiovascular arousal associated with appetitive events, such as food anticipation and feeding. [source]