Precipitation Gradient (precipitation + gradient)

Distribution by Scientific Domains


Selected Abstracts


THE EASTERN MARGIN OF GLACIATION IN THE BRITISH ISLES DURING THE YOUNGER DRYAS: THE BIZZLE CIRQUE, SOUTHERN SCOTLAND

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 3 2006
STEPHAN HARRISON
ABSTRACT. Geomorphological and sedimentological evidence of former glaciation in the Bizzle valley in the Cheviot Hills of northern England and southern Scotland was used to reconstruct the dimensions of a small topographically constrained glacier with an equilibrium line altitude (ELA) of 535 m. This was interpreted as having formed during Younger Dryas cooling; this is the only glacier to have been described from the area and is the most easterly site of Younger Dryas glaciation in the British Isles. Whilst glaciation at this time was extensive in the Lake District to the southwest, the restricted nature of Cheviot ice cover suggests that a steep west,east precipitation gradient existed in this region during the Younger Dryas. [source]


Storage, patterns and controls of soil organic carbon in the Tibetan grasslands

GLOBAL CHANGE BIOLOGY, Issue 7 2008
YUANHE YANG
Abstract The soils of the Qinghai-Tibetan Plateau store a large amount of organic carbon, but the magnitude, spatial patterns and environmental controls of the storage are little investigated. In this study, using data of soil organic carbon (SOC) in 405 profiles collected from 135 sites across the plateau and a satellite-based dataset of enhanced vegetation index (EVI) during 2001,2004, we estimated storage and spatial patterns of SOC in the alpine grasslands. We also explored the relationships between SOC density (soil carbon storage per area) and climatic variables and soil texture. Our results indicated that SOC storage in the top 1 m in the alpine grasslands was estimated at 7.4 Pg C (1 Pg=1015 g), with an average density of 6.5 kg m,2. The density of SOC decreased from the southeastern to the northwestern areas, corresponding to the precipitation gradient. The SOC density increased significantly with soil moisture, clay and silt content, but weakly with mean annual temperature. These variables could together explain about 72% of total variation in SOC density, of which 54% was attributed to soil moisture, suggesting a key role of soil moisture in shaping spatial patterns of SOC density in the alpine grasslands. [source]


Vegetation structure characteristics and relationships of Kalahari woodlands and savannas

GLOBAL CHANGE BIOLOGY, Issue 3 2004
J.L. Privette
Abstract The Kalahari Transect is one of several International Geosphere,Biosphere Programme (IGBP) transects designed to address global change questions at the regional scale, in particular by exploiting natural parameter gradients (Koch et al., 1995). In March 2000, we collected near-synoptic vegetation structural data at five sites spanning the Kalahari's large precipitation gradient (about 300,1000 mm yr,1) from southern Botswana (,24°S) to Zambia (,15°S). All sites were within the expansive Kalahari sandsheet. Common parameters, including plant area index (PAI), leaf area index (LAI) and canopy cover (CC), were measured or derived using several indirect instruments and at multiple spatial scales. Results show that CC and PAI increase with increasing mean annual precipitation. Canopy clumping, defined by the deviation of the gap size distribution from that of randomly distributed foliage, was fairly constant along the gradient. We provide empirical relationships relating these parameters to each other and to precipitation. These results, combined with those in companion Kalahari Transect studies, provide a unique and coherent test bed for ecological modeling. The data may be used to parameterize process models, as well as test internally predicted parameters and their variability in response to well-characterized climatological differences. [source]


Anthropogenic and climatic impacts on surface pollen assemblages along a precipitation gradient in north-eastern China

GLOBAL ECOLOGY, Issue 5 2010
Yun Zhang
ABSTRACT Aim, To understand the scenarios of ,anthropogenic biomes' that integrate human and ecological systems, we need to explore the impacts of climate and human disturbance on vegetation in the past and present. Interactions among surface pollen, modern vegetation and human activities along climate and land-use gradients are tested to evaluate the natural and anthropogenic forces shaping the modern vegetation, and hence to aid the reconstruction of vegetation and climate in the past. This in turn will help with future predictions. Location, The North-east China Transect (NECT) in north-eastern China. Methods, We analysed 33 surface pollen samples and 213 quadrats across four vegetation zones along the moisture/land-use gradients of the NECT. Detrended correspondence analysis (DCA) and redundancy analysis (RDA) of 52 pollen taxa and three environmental variables were used to distinguish anthropogenic and climatic factors that affect surface pollen assemblages along the NECT. Results, The 33 surface samples are divided into four pollen zones (forest, meadow steppe, typical steppe and desert steppe) corresponding to major vegetation types in the NECT. Variations in pollen ratios of fern/herb (F/H), Artemisia/Chenopodiaceae (A/C) and arboreal pollen/non-arboreal pollen (AP/NAP) represent the vegetation and precipitation gradient along the NECT. DCA and RDA analyses suggest that surface pollen assemblages are significantly influenced by the precipitation gradient. Changes in the abundance of Chenopodiaceae pollen are related to both human activities and precipitation. Main conclusions, Surface pollen assemblages, fossil pollen records, archaeological evidence and historical documents in northern China show that a large increase of Chenopodiaceae pollen indicates human-caused vegetation degradation in sandy habitats. The A/C ratio is a good indicator of climatic aridity, but should be used in conjunction with multiple proxies of human activities and climate change in the pollen-based reconstruction of anthropogenic biomes. [source]


United Kingdom and Ireland precipitation variability and the North Atlantic sea-level pressure field

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 8 2001
Sarah J. Murphy
Abstract The relationship between UK and Ireland (UK&I) precipitation variability and the North Atlantic sea-level pressure (SLP) field is examined. Strong positive correlations between the North Atlantic Oscillation (NAO) and precipitation in the northwest of the UK&I, particularly in winter, are confirmed but correlations are insignificant at the 0.05 level in the southeast during all months. This paper identifies new patterns of SLP associated with precipitation variability both for regions and months where precipitation variability is not strongly linked with the NAO and for patterns that appear to be more closely related to UK&I precipitation than the NAO. Two indices of monthly UK&I precipitation variability are calculated using empirical orthogonal functions (EOFs) of monthly UK&I precipitation anomalies. EOF1 represents precipitation variability for the UK&I as a whole and EOF2 the variability in the north,south precipitation gradient across the UK&I. Correlations between both these monthly EOF derived precipitation indices and SLP show a north,south (sub-tropical/mid-latitude) dipole, which is particularly strong in winter. These correlation patterns are then used to construct new SLP indices, which necessarily relate more closely to UK&I precipitation. The first index resembles the East Atlantic pattern from September to April. The second may be thought of as an alternative index of the NAO, such that it is optimized with respect to precipitation variability and is located northeast of those centres of action most commonly used to calculate the NAO index. Stepwise linear regression models, incorporating the two new indices and the original NAOI, suggest that over 25% of UK&I precipitation variability this century (1900,1994) in each month can be explained by a simple index representation of the North Atlantic SLP field. This rises to over 40% of variance explained in nearly all regions of the UK&I. Copyright © 2001 Royal Meteorological Society [source]


Genetic structure of Euclea schimperi (Ebenaceae) populations in monsoonal fog oases of the southern Arabian Peninsula

NORDIC JOURNAL OF BOTANY, Issue 3-4 2007
Jörg Meister
Euclea schimperi, a widespread Afromontane shrub or tree, occurs in the Arabian Peninsula in fragmented, semi-evergreen or evergreen woodland refugia in wet escarpment localities of the western and southern mountain chains. In the southern coastal mountains, the (semi-) evergreen woodland with E. schimperi is close to its ecological limit and consequently today very rare, with the exception of the monsoonal fog oases of east Yemen and south Oman in the central south coast of the Arabian Peninsula. Due to the steep precipitation gradient from the centre to the western edge in this monsoon affected area, E. schimperi is found in two different habitat types: in continuous woodland belts in the Hawf and Dhofar mountains, and in isolated, scattered woodland patches in the Fartak Mountains. Ten populations (138 individuals) from across the southern Arabian distribution area of the species were analysed using chloroplast microsatellites and AFLP fingerprinting to a) reconstruct the phylogeographical pattern of E. schimperi on the southern Arabian Peninsula and b) to evaluate the consequences of population fragmentation on the genetic diversity harboured in isolated patches vs cohering stands. Phylogeographical reconstructions show that the distribution area of E. schimperi in the southern Arabian Peninsula is characterised by a geographical split that separates the southwestern populations (representated by material from Jabal Eraf and Jabal Uthmar), from the southcentral populations, which themselves are split from each other into a western (Ras Fartak) and an eastern refugium (Hawf/Dhofar). The analysis of the within-population genetic diversity in E. schimperi populations resulted in a slightly, but not significantly higher genetic variation in small and isolated woodland patches (HS=0.302) compared to larger, cohering stands (HS=0.291). [source]


Patterns of species turnover in plant-pollinator communities along a precipitation gradient in Patagonia (Argentina)

AUSTRAL ECOLOGY, Issue 8 2009
MARIANO DEVOTO
Abstract Recent studies have assessed the influence of different types of gradients (e.g. altitudinal, latitudinal and temporal, among others) on the structure and function of community-level plant-pollinator webs. Although the importance of humidity as a major driver of species-richness gradients worldwide has been stressed by recent reviews, no studies have been specifically designed to address the influence of precipitation gradients on pollination webs. In the present paper we describe for the first time the turnover of species of plants and their associated flower visitors between eight communities located along a steep precipitation gradient in north-west Patagonia, Argentina. Our results show that: (i) there is a high spatial turnover of plant communities and their associated pollinators; (ii) this turnover is strongly related to precipitation changes across the region; and (iii) the turnover rate is similar for plants and pollinators. Our results support the view that the precipitation gradient is a significant factor associated with the regional turnover of plants and their pollinators in the temperate forests of southern South America. [source]


Genetic structure of Anogeissus dhofarica (Combretaceae) populations endemic to the monsoonal fog oases of the southern Arabian Peninsula

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009
CHRISTOPH OBERPRIELER
Anogeissus dhofarica (Combretaceae) is an endemic tree of the monsoon affected coastal mountains of the southern Arabian Peninsula, being the character species of the Hybantho durae,Anogeissetum dhofaricae association, a drought deciduous, monsoon forest community found only in the Dhofar region of southern Oman and the eastern Al-Mahra region of south-east Yemen. Due to the steep precipitation gradient from the centre to the edges in this monsoon affected area, A. dhofarica is found in two different habitat types: in continuous woodland belts of the Hawf and Dhofar mountains, and in isolated, scattered woodland patches, as found especially in the Fartak Mts (south-east Yemen). Fifteen populations (212 individuals) from across the whole distribution area of the species were analysed using amplified fragment length polymorphism fingerprinting to: (1) evaluate the consequences of population fragmentation on the genetic diversity harboured in isolated patches versus cohering stands of the species and (2) to reconstruct the phylogeographical pattern of A. dhofarica as a consequence of oscillations in the monsoon activity during the Pleistocene and Holocene. The analysis of among-population genetic differentiation and within-population genetic diversity in A. dhofarica populations resulted in a lack of genetic pauperization and genetic differentiation of populations of the distinctly isolated patches of the Fartak Mts compared to the more luxurious forests of the Hawf and Dhofar regions. This is considered to be due to the high buffer capacity against the loss of genetic diversity caused by the long-lived life-form of the species combined with the capability to propagate clonally and the relatively recent fragmentation of Anogeissus forests into the described patches rather than due to high values of gene flow among remnant populations caused by bee pollination and anemochorical and hydrochorical diaspore dispersal. The phylogeographical pattern of the species argues for a quite recent fragmentation of a once continuous forest belt of A. dhofarica that is rather connected with climate changes in the Holocene than triggered by aridity,humidity oscillations reported for the Pleistocene. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 40,51. [source]


Evolution, origin and age of lineages in the Californian and Mediterranean floras

JOURNAL OF BIOGEOGRAPHY, Issue 7 2009
David D. Ackerly
Abstract This paper addresses some of the conceptual issues involved in the analysis of the age and origin of mediterranean-climate plant taxa, paying particular attention to three topics: (1) the importance of an explicit time frame in the definition of biogeographical origins, (2) the distinction between the age of traits and the age of taxa, and (3) the idea of mediterranean-type ecosystems as environmental islands. (1) In California, recent analyses demonstrate that the diversity of species derived from different biogeographical origins is significantly correlated with temperature and precipitation gradients. These patterns support the hypothesis that niche conservatism is an important factor structuring modern diversity gradients. However, depending on how far back in time one looks, a species may be assigned to different origins; future discussions of biogeographical origins need to address the appropriate time frame for analysis. (2) Past research has demonstrated distinctive trait syndromes among woody plants of the Mediterranean, Chile, California and Mexico, and proposed that the syndromes are associated with lineages of different age in these floras. Reanalysis of individual traits demonstrates greater variability among regions than previously reported. The classification of plants into ,old' and ,new' genera is re-evaluated, and it is suggested that greater attention be paid to the age of traits, rather than to the age of taxa, especially at an arbitrary rank such as genus. (3) The idea of mediterranean-climate regions as ,climatic islands' is examined. Space,time diagrams of climate enable one to view the emergence of distinctive climatic regions in a continental context. The terms ,synclimatic' and ,anticlimatic' are proposed, referring to migration routes that parallel climate contours in space and time versus those that cross contours (including the case of geographic stasis in the face of climate change), respectively. Mediterranean-climate regions have served as important case studies in plant ecology and evolution, and merit continued close examination in the light of continued advances in phylogenetics and palaeoecology. [source]


Remote sensing of protected areas to derive baseline vegetation functioning characteristics

JOURNAL OF VEGETATION SCIENCE, Issue 5 2004
Martín F. Garbulsky
Abstract: Question: How can we derive baseline/reference situations to evaluate the impact of global change on terrestrial ecosystem functioning? Location: Main biomes (steppes to rain forests) of Argentina. Methods: We used AVHRR/NOAA satellite data to characterize vegetation functioning. We used the seasonal dynamics of the Normalized Difference Vegetation Index (NDVI), a linear estimator of the fraction of the photosynthetic active radiation intercepted by vegetation (fPAR), and the surface temperature (Ts), for the period 1981,1993. We extracted the following indices: NDVI integral (NDVI -I), NDVI relative range (Rrel), NDVI maximum value (Vmax), date of maximum NDVI (Dmax) and actual evapotranspiration. Results: fPAR varied from 2 to 80%, in relation to changes in net primary production (NPP) from 83 to 1700 g.m- 2.yr -1. NDVI -I, Vmax and fPAR had positive, curvilinear relationships to mean annual precipitation (MAP), NPP was linearly related to MAP. Tropical and subtropical biomes had a significantly lower seasonality (Rrel) than temperate ones. Dmax was not correlated with the defined environmental gradients. Evapotranspiration ranged from 100 to 1100 mm.yr -1. Interannual variability of NDVI attributes varied across the temperature and precipitation gradients. Conclusions: Our results may be used to represent baseline conditions in evaluating the impact of land use changes across environmental gradients. The relationships between functional attributes and environmental variables provide a way to extrapolate ecological patterns from protected areas across modified habitats and to generate maps of ecosystem functioning. [source]


Patterns of species turnover in plant-pollinator communities along a precipitation gradient in Patagonia (Argentina)

AUSTRAL ECOLOGY, Issue 8 2009
MARIANO DEVOTO
Abstract Recent studies have assessed the influence of different types of gradients (e.g. altitudinal, latitudinal and temporal, among others) on the structure and function of community-level plant-pollinator webs. Although the importance of humidity as a major driver of species-richness gradients worldwide has been stressed by recent reviews, no studies have been specifically designed to address the influence of precipitation gradients on pollination webs. In the present paper we describe for the first time the turnover of species of plants and their associated flower visitors between eight communities located along a steep precipitation gradient in north-west Patagonia, Argentina. Our results show that: (i) there is a high spatial turnover of plant communities and their associated pollinators; (ii) this turnover is strongly related to precipitation changes across the region; and (iii) the turnover rate is similar for plants and pollinators. Our results support the view that the precipitation gradient is a significant factor associated with the regional turnover of plants and their pollinators in the temperate forests of southern South America. [source]


Propagation of orographic barriers along an active range front: insights from sandstone petrography and detrital apatite fission-track thermochronology in the intramontane Angastaco basin, NW Argentina

BASIN RESEARCH, Issue 1 2006
Isabelle Coutand
ABSTRACT The arid Puna plateau of the southern Central Andes is characterized by Cenozoic distributed shortening forming intramontane basins that are disconnected from the humid foreland because of the defeat of orogen-traversing channels. Thick Tertiary and Quaternary sedimentary fills in Puna basins have reduced topographic contrasts between the compressional basins and ranges, leading to a typical low-relief plateau morphology. Structurally identical basins that are still externally drained straddle the eastern border of the Puna and document the eastward propagation of orographic barriers and ensuing aridification. One of them, the Angastaco basin, is transitional between the highly compartmentalized Puna highlands and the undeformed Andean foreland. Sandstone petrography, structural and stratigraphic analysis, combined with detrital apatite fission-track thermochronology from a ,6200-m-thick Miocene to Pliocene stratigraphic section in the Angastaco basin, document the late Eocene to late Pliocene exhumation history of source regions along the eastern border of the Puna (Eastern Cordillera (EC)) as well as the construction of orographic barriers along the southeastern flank of the Central Andes. Onset of exhumation of a source in the EC in late Eocene time as well as a rapid exhumation of the Sierra de Luracatao (in the EC) at about 20 Ma are recorded in the detrital sediments of the Angastaco basin. Sediment accumulation in the basin began ,15 Ma, a time at which the EC had already built sufficient topography to prevent Puna sourced detritus from reaching the basin. After ,13 Ma, shortening shifted eastward, exhuming ranges that preserve an apatite fission-track partial annealing zone recording cooling during the late Cretaceous rifting event. Facies changes and fossil content suggest that after 9 Ma, the EC constituted an effective orographic barrier that prevented moisture penetration into the plateau. Between 3.4 and 2.4 Ma, another orographic barrier was uplifted to the east, leading to further aridification and pronounced precipitation gradients along the mountain front. This study emphasizes the important role of tectonics in the evolution of climate in this part of the Andes. [source]