Preadipocytes Differentiation (preadipocyte + differentiation)

Distribution by Scientific Domains


Selected Abstracts


Advanced oxidation protein products inhibit differentiation and activate inflammation in 3T3-L1 preadipocytes,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2010
Qiu Gen Zhou
Accumulation of advanced oxidation protein products (AOPPs) is prevalent in metabolic syndromes, a condition with impaired preadipocytes differentiation. In the present study, we tested the hypothesis that AOPPs disturb preadipocyte differentiation. Exposure of 3T3-L1 preadipocytes to increased levels of AOPPs inhibited accumulation of intracellular triglyceride and decreased the expression of the essential markers of matured adipocytes, such as adipocyte fatty-acid-binding protein (aP2), CAAT/enhancer-binding protein (C/EBP)-,, and peroxisome proliferator-activated receptor (PPAR)-,, in response to standard adipogenic induction. Inhibitory effects of AOPPs on preadipocytes differentiation was time sensitive, which occurred at the early stage of differentiation. In the presence of AOPPs, induction of preadipocytes differentiation resulted in upregulated expression of C/EBP homologous protein (CHOP) and CUG-Triplet repeat-binding protein (CUGBP), two important inhibitors of preadipocytes differentiation. In addition, treatment with AOPPs increased abundance of C/EBP-,-liver enriched inhibitory protein (C/EBP-,-LIP), a truncated C/EBP-, isoform without adipogenic activity. Moreover, AOPPs-treated preadipocytes expressed a macrophage marker F4/80 and overexpressed tumor necrosis factor-, and interleukin-6 via nuclear factor-,B (NF-,B)-dependent pathway. However, blocking inflammation with NF-,B inhibitor failed to improve AOPPs-induced inhibition of preadipocytes differentiation. These data suggest that accumulation of AOPPs may inhibit differentiation of preadipocytes and activate inflammation in these cells. This information might have implication for understanding the impairment of preadipocytes differentiation and fat inflammation seen in metabolic syndrome. J. Cell. Physiol. 225: 42,51, 2010. © 2010 Wiley-Liss, Inc. [source]


Adiposity, fatty acid composition, and delta-9 desaturase activity during growth in beef cattle

ANIMAL SCIENCE JOURNAL, Issue 5 2006
Stephen B. SMITH
ABSTRACT Oleic acid (18:1n-9) is the most abundant fatty acid in bovine adipose tissue. Because most of the lipid in bovine muscle is contributed by intramuscular adipocytes, oleic acid also is the predominant fatty acid in beef. In many species, the concentration of oleic acid in adipose tissue is dictated by the average concentration of oleic acid in the diet, but in ruminant species such as beef cattle, oleic acid is hydrogenated largely to stearic acid by ruminal microorganisms. In these species, the concentration of oleic acid in adipose tissue is dependent upon the activity of ,9 desaturase, encoded by the stearoyl coenzyme A desaturase (SCD) gene. Expression of the SCD gene is essential for bovine preadipocyte differentiation, and desaturase gene expression and catalytic activity increase dramatically as adipose tissue mass increases after weaning. Feeding a hay-based diet to American Wagyu steers to a typical Japanese bodyweight endpoint (650 kg) markedly stimulated desaturase enzyme activity as well as the accumulation of both oleic acid and intramuscular lipid, but the increase in oleic acid and intramuscular lipid was much less in hay-fed Angus steers. Increasing the concentration of oleic acid improves the palatability and healthiness of beef, and Korean Hanwoo and Japanese Black (and American Wagyu) seem especially well adapted to accumulate oleic acid in their adipose tissue. [source]


Abstracts: The effects of Coptis japonica root extract and its key component, berberine, on human subcutaneous adipocytes

INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 5 2010
Keiko Yashiki(Tohi)
pp.274,280 An increase of subcutaneous fat presses lymph vessels and blood vessels in skin tissues, and results in not only causing skin troubles such as skin sagging and swelling but also forming cellulite that makes bodylines worse. To expand further application of plant extracts to cosmetics, we focused on inhibitory effects of subcutaneous preadipocytes differentiation and facilitating lipolysis in adipocytes. In this study, in a screening test of a number of plant extracts, Coptis japonica root extract and its key component, berberine, showed potent inhibition of triglyceride accumulation and subcutaneous preadipocytes differentiation. Furthermore, Coptis japonica root extract and berberine down-regulated the mRNA expression level of several differentiation factors derived from subcutaneous preadipocytes. Coptis japonica root extract and berberine in subcutaneous adipocytes facilitated lipolysis in mature adipocytes. Our study suggested that Coptis japonica root extract and its key component, berberine, is expected to be useful for slimming and related skin troubles such as skin sagging, swelling, cellulite, and so on. [source]


Advanced oxidation protein products inhibit differentiation and activate inflammation in 3T3-L1 preadipocytes,

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2010
Qiu Gen Zhou
Accumulation of advanced oxidation protein products (AOPPs) is prevalent in metabolic syndromes, a condition with impaired preadipocytes differentiation. In the present study, we tested the hypothesis that AOPPs disturb preadipocyte differentiation. Exposure of 3T3-L1 preadipocytes to increased levels of AOPPs inhibited accumulation of intracellular triglyceride and decreased the expression of the essential markers of matured adipocytes, such as adipocyte fatty-acid-binding protein (aP2), CAAT/enhancer-binding protein (C/EBP)-,, and peroxisome proliferator-activated receptor (PPAR)-,, in response to standard adipogenic induction. Inhibitory effects of AOPPs on preadipocytes differentiation was time sensitive, which occurred at the early stage of differentiation. In the presence of AOPPs, induction of preadipocytes differentiation resulted in upregulated expression of C/EBP homologous protein (CHOP) and CUG-Triplet repeat-binding protein (CUGBP), two important inhibitors of preadipocytes differentiation. In addition, treatment with AOPPs increased abundance of C/EBP-,-liver enriched inhibitory protein (C/EBP-,-LIP), a truncated C/EBP-, isoform without adipogenic activity. Moreover, AOPPs-treated preadipocytes expressed a macrophage marker F4/80 and overexpressed tumor necrosis factor-, and interleukin-6 via nuclear factor-,B (NF-,B)-dependent pathway. However, blocking inflammation with NF-,B inhibitor failed to improve AOPPs-induced inhibition of preadipocytes differentiation. These data suggest that accumulation of AOPPs may inhibit differentiation of preadipocytes and activate inflammation in these cells. This information might have implication for understanding the impairment of preadipocytes differentiation and fat inflammation seen in metabolic syndrome. J. Cell. Physiol. 225: 42,51, 2010. © 2010 Wiley-Liss, Inc. [source]