Practical Devices (practical + device)

Distribution by Scientific Domains


Selected Abstracts


Li-Metal Symmetrical Cell Studies Using Ionic Organic Plastic Crystal Electrolyte,

ADVANCED ENGINEERING MATERIALS, Issue 12 2009
Patrick C. Howlett
A low current density preconditioning process, which produces an improved lithium transport mechanism is created by the action of charge flow through a plastic crystal electrolyte (figure). A reduction in cell polarisation at high applied current density is demonstrated which approaches the rates required for these electrolytes to be used in practical devices. [source]


Nanostructured Bulk Silicon as an Effective Thermoelectric Material

ADVANCED FUNCTIONAL MATERIALS, Issue 15 2009
Sabah K. Bux
Abstract Thermoelectric power sources have consistently demonstrated their extraordinary reliability and longevity for deep space missions and small unattended terrestrial systems. However, more efficient bulk materials and practical devices are required to improve existing technology and expand into large-scale waste heat recovery applications. Research has long focused on complex compounds that best combine the electrical properties of degenerate semiconductors with the low thermal conductivity of glassy materials. Recently it has been found that nanostructuring is an effective method to decouple electrical and thermal transport parameters. Dramatic reductions in the lattice thermal conductivity are achieved by nanostructuring bulk silicon with limited degradation in its electron mobility, leading to an unprecedented increase by a factor of 3.5 in its performance over that of the parent single-crystal material. This makes nanostructured bulk (nano-bulk) Si an effective high temperature thermoelectric material that performs at about 70% the level of state-of-the-art Si0.8Ge0.2 but without the need for expensive and rare Ge. [source]


Optical Power Limiters: Symmetric Versus Unsymmetric Platinum(II) Bis(aryleneethynylene)s with Distinct Electronic Structures for Optical Power Limiting/Optical Transparency Trade-off Optimization (Adv. Mater.

ADVANCED FUNCTIONAL MATERIALS, Issue 4 2009
8/2009)
The development of symmetric and unsymmetric platinum(II) bis(acetylide)s as highly transparent optical limiters is described by Wong and co-workers on page 531. Their excited state character is governed by electronic structure, which significantly affects their photophysical properties and optical power limiting (OPL) behavior. The sound OPL responses and low OPL thresholds together with their excellent optical transparency render these materials very promising candidates for practical devices for the protection of human eyes and other delicate electro-optic sensors. [source]


Broadband spectrally dynamic solid state illumination source

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 6 2006
David B. Nicol
Abstract Solid state lighting has done well recently in niche markets such as signage and displays, however, no available SSL technologies incorporate all the necessary attributes for general illumination. Development of a novel solid state general illumination source is discussed here. Two LEDs emitting at two distinct wavelengths can be monolithically grown and used to excite two or more phosphors with varied excitation spectra. The combined phosphorescence spectrum can then be controlled by adjusting the relative intensities of the two LED emissions. Preliminary phosphor analysis shows such a scheme to be viable for use in a spectrally dynamic broadband general illumination source. A tunnel junction is envisioned as a means of current spreading in a buried layer for three terminal operation. However, tunnel junction properties in GaN based materials are not well understood, and require further optimization to be practical devices. Preliminary results on GaN tunnel junctions are presented here as well. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]