Power Cycle (power + cycle)

Distribution by Scientific Domains


Selected Abstracts


The application of spreadsheets to the analysis and optimization of systems and processes in the teaching of hydraulic and thermal engineering

COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, Issue 4 2006
A. Rivas
Abstract This article shows the capability of current spreadsheets to define, analyze and optimize models of systems and processes. Specifically, the Microsoft spreadsheet Excel is used, with its built-in solver, to analyze and to optimize systems and processes of medium complexity, whose mathematical models are expressed by means of nonlinear systems of equations. Two hydraulic and thermal engineering-based application examples are presented, respectively: the analysis and optimization of vapor power cycles, and the analysis and design of piping networks. The mathematical models of these examples have been implemented in Excel and have been solved with the solver. For the power cycles, the thermodynamic properties of water have been calculated by means of the add-in TPX (Thermodynamic Properties for Excel). Performance and optimum designs are presented in cases studies, according to the optimization criteria of maximum efficiency for the power cycle and minimum cost for the piping networks. © 2006 Wiley Periodicals, Inc. Comput Appl Eng Educ 14: 256,268, 2006; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20085 [source]


Cost numerical optimization of the triple-pressure steam-reheat gas-reheat gas-recuperated combined power cycle that uses steam for cooling the first GT

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 15 2008
A. M. Bassily
Abstract Optimization is an important method for improving the efficiency and power of the combined cycle. In this paper, the triple-pressure steam-reheat gas-reheat gas-recuperated combined cycle that uses steam for cooling the first gas turbine (the regular steam-cooled cycle) was optimized relative to its operating parameters. The optimized cycle generates more power and consumes more fuel than the regular steam-cooled cycle. An objective function of the net additional revenue (the saving of the optimization process) was defined in terms of the revenue of the additional generated power and the costs of replacing the heat recovery steam generator (HRSG) and the costs of the additional operation and maintenance, installation, and fuel. Constraints were set on many operating parameters such as air compression ratio, the minimum temperature difference for pinch points (,Tppm), the dryness fraction at steam turbine outlet, and stack temperature. The net additional revenue and cycle efficiency were optimized at 11 different maximum values of turbine inlet temperature (TIT) using two different methods: the direct search and the variable metric. The optima were found at the boundaries of many constraints such as the maximum values of air compression ratio, turbine outlet temperature (TOT), and the minimum value of stack temperature. The performance of the optimized cycles was compared with that for the regular steam-cooled cycle. The results indicate that the optimized cycles are 1.7,1.8 percentage points higher in efficiency and 4.4,7.1% higher in total specific work than the regular steam-cooled cycle when all cycles are compared at the same values of TIT and ,Tppm. Optimizing the net additional revenue could result in an annual saving of 21 million U.S. dollars for a 439,MW power plant. Increasing the maximum TOT to 1000°C and replacing the stainless steel recuperator heat exchanger of the optimized cycle with a super-alloys-recuperated heat exchanger could result in an additional efficiency increase of 1.1 percentage point and a specific work increase of 4.8,7.1%. The optimized cycles were about 3.3 percentage points higher in efficiency than the most efficient commercially available H-system combined cycle when compared at the same value of TIT. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Modeling and optimization of a novel pressurized CHP system with water extraction and refrigeration

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 8 2008
J. R. Khan
Abstract A novel cooling, heat, and power (CHP) system has been proposed that features a semi-closed Brayton cycle with pressurized recuperation, integrated with a vapor absorption refrigeration system (VARS). The semi-closed Brayton cycle is called the high-pressure regenerative turbine engine (HPRTE). The VARS interacts with the HPRTE power cycle through heat exchange in the generator and the evaporator. Waste heat from the recirculated combustion gas of the HPRTE is used to power the absorption refrigeration unit, which cools the high-pressure compressor inlet of the HPRTE to below ambient conditions and also produces excess refrigeration in an amount that depends on ambient conditions. Water produced as a product of combustion is intentionally condensed in the evaporator of the VARS, which is designed to provide sufficient cooling for the inlet air to the high-pressure compressor, water extraction, and for an external cooling load. The computer model of the combined HPRTE/VARS cycle predicts that with steam blade cooling and a medium-sized engine, the cycle will have a thermal efficiency of 49% for a turbine inlet temperature of 1400°C. This thermal efficiency, is in addition to the large external cooling load, generated in the combined cycle, which is 13% of the net work output. In addition, it also produces up to 1.4 kg of water for each kg of fuel consumed, depending upon the fuel type. When the combined HPRTE/VARS cycle is optimized for maximum thermal efficiency, the optimum occurs for a broad range of operating conditions. Details of the multivariate optimization procedure and results are presented in this paper. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Analysis and cost optimization of the triple-pressure steam-reheat gas-reheat gas-recuperated combined power cycle

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 2 2008
A. M. Bassily
Abstract Increasing the inlet temperature of gas turbine (TIT) and optimization are important methods for improving the efficiency and power of the combined cycle. In this paper, the triple-pressure steam-reheat gas-reheat recuperated combined cycle (the Regular Gas-Reheat cycle) was optimized relative to its operating parameters, including the temperature differences for pinch points (,TPP). The optimized triple-pressure steam-reheat gas-reheat recuperated combined cycle (the Optimized cycle) had much lower ,TPP than that for the Regular Gas-Reheat cycle so that the area of heat transfer of the heat recovery steam generator (HRSG) of the Optimized cycle had to be increased to keep the same rate of heat transfer. For the same mass flow rate of air, the Optimized cycle generates more power and consumes more fuel than the Regular Gas-Reheat cycle. An objective function of the net additional revenue (the saving of the optimization process) was defined in terms of the revenue of the additional generated power and the costs of replacing the HRSG and the additional fuel. Constraints were set on many operating parameters such as the minimum temperature difference for pinch points (,TPPm), the steam turbines inlet temperatures and pressures, and the dryness fraction at steam turbine outlet. The net additional revenue was optimized at 11 different maximum values of TIT using two different methods: the direct search and variable metric. The performance of the Optimized cycle was compared with that for the Regular Gas-Reheat cycle and the triple-pressure steam-reheat gas-reheat recuperated reduced-irreversibility combined cycle (the Reduced-Irreversibility cycle). The results indicate that the Optimized cycle is 0.17,0.35 percentage point higher in efficiency and 5.3,6.8% higher in specific work than the Reduced-Irreversibility cycle, which is 2.84,2.91 percentage points higher in efficiency and 4.7% higher in specific work than the Regular Gas-Reheat cycle when all cycles are compared at the same values of TIT and ,TPPm. Optimizing the net additional revenue could result in an annual saving of 33.7 million US dollars for a 481 MW power plant. The Optimized cycle was 3.62 percentage points higher in efficiency than the most efficient commercially available H-system combined cycle when compared at the same value of TIT. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Exergy analysis of a coal-based 210 MW thermal power plant

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 1 2007
S. Sengupta
Abstract In the present work, exergy analysis of a coal-based thermal power plant is done using the design data from a 210 MW thermal power plant under operation in India. The entire plant cycle is split up into three zones for the analysis: (1) only the turbo-generator with its inlets and outlets, (2) turbo-generator, condenser, feed pumps and the regenerative heaters, (3) the entire cycle with boiler, turbo-generator, condenser, feed pumps, regenerative heaters and the plant auxiliaries. It helps to find out the contributions of different parts of the plant towards exergy destruction. The exergy efficiency is calculated using the operating data from the plant at different conditions, viz. at different loads, different condenser pressures, with and without regenerative heaters and with different settings of the turbine governing. The load variation is studied with the data at 100, 75, 60 and 40% of full load. Effects of two different condenser pressures, i.e. 76 and 89 mmHg (abs.), are studied. Effect of regeneration on exergy efficiency is studied by successively removing the high pressure regenerative heaters out of operation. The turbine governing system has been kept at constant pressure and sliding pressure modes to study their effects. It is observed that the major source of irreversibility in the power cycle is the boiler, which contributes to an exergy destruction of the order of 60%. Part load operation increases the irreversibilities in the cycle and the effect is more pronounced with the reduction of the load. Increase in the condenser back pressure decreases the exergy efficiency. Successive withdrawal of the high pressure heaters show a gradual increment in the exergy efficiency for the control volume excluding the boiler, while a decrease in exergy efficiency when the whole plant including the boiler is considered. Keeping the main steam pressure before the turbine control valves in sliding mode improves the exergy efficiencies in case of part load operation. Copyright © 2006 John Wiley & Sons, Ltd. [source]


The application of spreadsheets to the analysis and optimization of systems and processes in the teaching of hydraulic and thermal engineering

COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, Issue 4 2006
A. Rivas
Abstract This article shows the capability of current spreadsheets to define, analyze and optimize models of systems and processes. Specifically, the Microsoft spreadsheet Excel is used, with its built-in solver, to analyze and to optimize systems and processes of medium complexity, whose mathematical models are expressed by means of nonlinear systems of equations. Two hydraulic and thermal engineering-based application examples are presented, respectively: the analysis and optimization of vapor power cycles, and the analysis and design of piping networks. The mathematical models of these examples have been implemented in Excel and have been solved with the solver. For the power cycles, the thermodynamic properties of water have been calculated by means of the add-in TPX (Thermodynamic Properties for Excel). Performance and optimum designs are presented in cases studies, according to the optimization criteria of maximum efficiency for the power cycle and minimum cost for the piping networks. © 2006 Wiley Periodicals, Inc. Comput Appl Eng Educ 14: 256,268, 2006; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/cae.20085 [source]