Home About us Contact | |||
Postnatal Survival (postnatal + survival)
Selected AbstractsDietary Zinc Supplementation Throughout Pregnancy Protects Against Fetal Dysmorphology and Improves Postnatal Survival After Prenatal Ethanol Exposure in MiceALCOHOLISM, Issue 4 2009Brooke L. Summers Background:, We have previously demonstrated that ethanol teratogenicity is associated with metallothionein-induced fetal zinc (Zn) deficiency, and that maternal subcutaneous Zn treatment given with ethanol in early pregnancy prevents fetal abnormalities and spatial memory impairments in mice. Here we investigated whether dietary Zn supplementation throughout pregnancy can also prevent ethanol-related dysmorphology. Methods:, Pregnant mice were injected with saline or 25% ethanol (0.015 ml/g intraperitoneally at 0 and 4 hours) on gestational day (GD) 8 and fed either a control (35 mg Zn/kg) or a Zn-supplemented diet (200 mg Zn/kg) from GD 0 to 18. Fetuses from the saline, saline + Zn, ethanol and ethanol + Zn groups were assessed for external birth abnormalities on GD 18. In a separate cohort of mice, postnatal growth and survival of offspring from these treatment groups were examined from birth until postnatal day 60. Results:, Fetuses from dams treated with ethanol alone in early pregnancy had a significantly greater incidence of physical abnormalities (26%) compared to those from the saline (10%), saline + Zn (9%), or ethanol + Zn (12%) groups. The incidence of abnormalities in ethanol + Zn-supplemented fetuses was not different from saline-treated fetuses. While ethanol exposure did not affect the number of fetal resorptions or pre- or postnatal weight, there were more stillbirths with ethanol alone, and cumulative postnatal mortality was significantly higher in offspring exposed to ethanol alone (35% deaths) compared to all other treatment groups (13.5 to 20.5% deaths). Mice supplemented with Zn throughout pregnancy had higher plasma Zn concentrations than those in un-supplemented groups. Conclusions:, These findings demonstrate that dietary Zn supplementation throughout pregnancy ameliorates dysmorphology and postnatal mortality caused by ethanol exposure in early pregnancy. [source] Neurotrophin-3 signaling in mammalian Merkel cell developmentDEVELOPMENTAL DYNAMICS, Issue 4 2003Viktor Szeder Abstract Merkel cells are sensory cells of neural crest origin. Because little is known about the mechanisms that direct their differentiation, we have investigated the potential role of a candidate regulatory factor, neurotrophin-3 (NT-3). At embryonic day 16.5 (E 16.5), neither NT-3 nor its primary receptors, TrkC and p75NTR are expressed by Merkel cells in the murine whisker. At the time of birth, however, Merkel cells are immunoreactive for NT-3, TrkC and p75NTR. In TrkC null and NT-3 null mice, Merkel cells differentiate initially, but undergo apoptosis perinatally. These results show that NT-3 signaling is not required for the differentiation of Merkel cells, but that it is essential for their postnatal survival. Developmental Dynamics 228:623,629, 2003. © 2003 Wiley-Liss, Inc. [source] Bile acid treatment alters hepatic disease and bile acid transport in peroxisome-deficient PEX2 Zellweger mice,HEPATOLOGY, Issue 4 2007Megan H. Keane The marked deficiency of peroxisomal organelle assembly in the PEX2,/, mouse model for Zellweger syndrome provides a unique opportunity to developmentally and biochemically characterize hepatic disease progression and bile acid products. The postnatal survival of homozygous mutants enabled us to evaluate the response to bile acid replenishment in this disease state. PEX2 mutant liver has severe but transient intrahepatic cholestasis that abates in the early postnatal period and progresses to steatohepatitis by postnatal day 36. We confirmed the expected reduction of mature C24 bile acids, accumulation of C27,bile acid intermediates, and low total bile acid level in liver and bile from these mutant mice. Treating the PEX2,/, mice with bile acids prolonged postnatal survival, alleviated intrahepatic cholestasis and intestinal malabsorption, reduced C27,bile acid intermediate production, and prevented older mutants from developing severe steatohepatitis. However, this therapy exacerbated the degree of hepatic steatosis and worsened the already severe mitochondrial and cellular damage in peroxisome-deficient liver. Both untreated and bile acid,fed PEX2,/, mice accumulated high levels of predominantly unconjugated bile acids in plasma because of altered expression of hepatocyte bile acid transporters. Significant amounts of unconjugated bile acids were also found in the liver and bile of PEX2 mutants, indicating a generalized defect in bile acid conjugation. Conclusion: Peroxisome deficiency widely disturbs bile acid homeostasis and hepatic functioning in mice, and the high sensitivity of the peroxisome-deficient liver to bile acid toxicity limits the effectiveness of bile acid therapy for preventing hepatic disease. (HEPATOLOGY 2007;45:982,997.) [source] Development and neuronal dependence of cutaneous sensory nerve formations: Lessons from neurotrophins,MICROSCOPY RESEARCH AND TECHNIQUE, Issue 5 2010Juan A. Montaño Abstract Null mutations of genes from the NGF family of NTs and their receptors (NTRs) lead to loss/reduction of specific neurons in sensory ganglia; conversely, cutaneous overexpression of NTs results in skin hyperinnervation and increase or no changes in the number of sensory neurons innervating the skin. These neuronal changes are paralleled with loss of specific types of sensory nerve formations in the skin. Therefore, mice carrying mutations in NT or NTR genes represent an ideal model to identify the neuronal dependence of each type of cutaneous sensory nerve ending from a concrete subtype of sensory neuron, since the development, maintenance, and structural integrity of sensory nerve formations depend upon sensory neurons. Results obtained from these mouse strains suggest that TrkA positive neurons are connected to intraepithelial nerve fibers and other sensory nerve formations depending from C and A, nerve fibers; the neurons expressing TrkB and responding to BDNF and NT-4 innervate Meissner corpuscles, a subpopulation of Merkell cells, some mechanoreceptors of the piloneural complex, and the Ruffini's corpuscles; finally, a subpopulation of neurons, which are responsive to NT-3, support postnatal survival of some intraepithelial nerve fibers and Merkel cells in addition to the muscle mechanoreceptors. On the other hand, changes in NTs and NTRs affect the structure of non-nervous structures of the skin and are at the basis of several cutaneous pathologies. This review is an update about the role of NTs and NTRs in the maintenance of normal cutaneous innervation and maintenance of skin integrity. Microsc. Res. Tech. 2010. © 2009 Wiley-Liss, Inc. [source] Influence of the mother's preceding pregnancies on fetal development and postnatal survival of the neonate, in normal pregnancy.AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 5 2010An immunological phenomenon? Objectives: The objective of this study is to test for an association between the sex of conceptuses of the mother's preceding pregnancies and fetal development and early neonatal survival in normal pregnancy. Methods: A population of 27,243 neonates, including a subsample of 7,773 "newborn/mother/placenta units" were divided into cohorts according to the sex of the neonate and the sex and number of conceptuses of the mother's preceding pregnancies. The average birth weight, placenta weight and early neonatal mortality rate were measured for each cohort and compared. The "dose effect" of preceding pregnancy was tested by linear and quadratic regression analysis, and by chi-square trend test for linearity of proportions. Results: The results have shown an association between these three variables and the preceding pregnancies of the mother. Fetal development and early survival of the neonate are positively associated with the mother's preceding pregnancies of same sex as the neonate, and negatively associated with the preceding pregnancies of opposite sex to the neonate. The strength of the phenomenon increases with parity, at least for the first three parities. The association is statistically significant. Conclusions: The association between fetal development and neonatal survival and preceding pregnancies of the mother would be compatible with the action of male and female specific antigens capable of affecting selective implantation of blastocysts, which commands subsequent fetal development as well as early neonatal survival. Am. J. Hum. Biol. 22:708-715, 2010. © 2010Wiley-Liss, Inc. [source] Glial cell line-derived neurotrophic factor-responsive and neurotrophin-3-responsive neurons require the cytoskeletal linker protein dystonin for postnatal survivalTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 2 2001Julie A. Carlsten Abstract We have investigated the fate of different neurotrophin-responsive subpopulations of dorsal root ganglion neurons in dystonia musculorum (dt) mice. These mice have a null mutation in the cytoskeletal linker protein, dystonin. Dystonin is expressed by all sensory neurons and cross links actin filaments, intermediate filaments, and microtubules. The dt mice undergo massive sensory neurodegeneration postnatally and die at around 4 weeks of age. We assessed the surviving and degenerating neuronal populations by comparing the dorsal root ganglion (DRG) neurons and central and peripheral projections in dt mice and wildtype mice. Large, neurofilament-H-positive neurons, many of which are muscle afferents and are neurotrophin-3 (NT-3)-responsive, were severely decreased in number in dt DRGs. The loss of muscle afferents was correlated with a degeneration of muscle spindles in skeletal muscle. Nerve growth factor (NGF)-responsive populations, which were visualized using calcitonin gene-related peptide and p75, appeared qualitatively normal in the lumbar spinal cord, DRG, and hindlimb skin. In contrast, glial cell line-derived neurotrophic factor (GDNF)-responsive populations, which were visualized using the isolectin B-4 and thiamine monophosphatase, were severely diminished in the lumbar spinal cord, DRG, and hindlimb skin. Analysis of NT-3, NGF, and GDNF mRNA levels using semiquantitative reverse transcriptase-polymerase chain reaction revealed normal trophin synthesis in the peripheral targets of dt mice, arguing against decreased trophic synthesis as a possible cause of neuronal degeneration. Thus, the absence of dystonin results in the selective survival of NGF-responsive neurons and the postnatal degeneration of many NT-3- and GDNF-responsive neurons. Our results reveal that the loss of this ubiquitously expressed cytoskeletal linker has diverse effects on sensory subpopulations. Moreover, we show that dystonin is critical for the maintenance of certain DRG neurons, and its function may be related to neurotrophic support. J. Comp. Neurol. 432:155,168, 2001. © 2001 Wiley-Liss, Inc. [source] |