Postnatal Stages (postnatal + stage)

Distribution by Scientific Domains


Selected Abstracts


Differential cytokine activity and morphology during wound healing in the neonatal and adult rat skin

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 6 2007
W. Wagner
Abstract Wound-healing mechanisms change during transition from prenatal to postnatal stage. Cytokines are known to play a key role in this process. The current study investigated the differential cytokine activity and healing morphology during healing of incisional skin wounds in rats of the ages neonatal (p0), 3 days old (p3) and adult, after six different healing times (2 hrs to 30 days). All seven tested cytokines (Transforming Growth Factor (TGF) ,, TGF,1, ,,2 and ,,3, IGF 1, Platelet Derived Growth Factor A (PDGF A), basic Fibroblast Growth Factor (bFGF) exhibited higher expression in the adult wounds than at the ages p0 and p3. Expression typically peaked between 12 hrs and 3 days post-wounding, and was not detectable any more at days 10 and 30. The neonate specimen showed more rapid re-epithelialization, far less inflammation and scarring, and larger restitution of original tissue architecture than their adult counterparts, resembling a prenatal healing pattern. The results may encourage the use of neonatal rat skin as a wound-healing model for further studies, instead of the more complicated prenatal animal models. Secondly, the data may recommend inhibition of PDGF A, basic FGF or TGF-,1 as therapeutic targets in efforts to optimize wound healing in the adult organism. [source]


Disruption of brain development in male rats exposed prenatally to 5-bromo-2,-deoxyuridine

CONGENITAL ANOMALIES, Issue 4 2001
Makiko Kuwagata
ABSTRACT, Sprague-Dawley rats were treated intraperitoneally with 5-bromo-2,-deoxyuridine (BrdU) at 0,12.5 or 50 mg/kg/day on days 9 through 15 of gestation to evaluate the effects on development of the brain of offspring. Prenatal exposure to BrdU induced abnormal development of the brain; dilatation of the lateral ventricles in male offspring in the postnatal period. The ratio of the length of the longitudinal fissure to that of the cerebral cortex decreased in a dose-dependent manner in the embryonic period and thereafter. In 14-week-old male offspring exposed prenatally to BrdU at 50 mg/kg, the cortex layer of the cerebrum was thinner than that of the controls. Masculine sexual behavior was markedly impaired and the volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA) was decreased in the 50 mg/kg group as compared with the controls. These results demonstrate that prenatal exposure to BrdU affected the development of the brain hi the prenatal and postnatal stages and reduced the volume of SDN-POA after puberty, resulting in a disruption of reproductive ability in male rats. [source]


Developmental shift in bidirectional functions of taurine-sensitive chloride channels during cortical circuit formation in postnatal mouse brain

DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2004
Mika Yoshida
Abstract Taurine (2-aminoethanesulfonic acid) is the most abundant free amino acid in the developing mammalian cerebral cortex, however, few studies have reported its neurobiological functions during development. In this study, by means of whole-cell patch-clamp recordings, we examined the effects of taurine on chloride channel receptors in neocortical neurons from early to late postnatal stages, which cover a critical period in cortical circuit formation. We show here that taurine activates chloride channels in cortical neurons throughout the postnatal stages examined (from postnatal day 2 to day 36). The physiological effects of taurine changed from excitatory to inhibitory due to variations in the intracellular Cl, concentration during development. An antagonist blocking analysis also demonstrated a developmental shift in the receptor target of taurine, from glycine receptors to GABAA receptors. Taken together, these results may reflect genetically programmed, bidirectional functions of taurine. At the early developmental stage, taurine acting on glycine receptors would serve to promote cortical circuit formation. As cortical circuit has to be regulated in the later stages, taurine would serve as a safeguard against hyperexcitable circuit. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 166,175, 2004 [source]


Semaphorin 3A-Neuropilin-1 signaling regulates peripheral axon fasciculation and pathfinding but not developmental cell death patterns

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2010
Corinna Haupt
Abstract In early development, an excess of neurons is generated, of which later about half will be lost by cell death due to a limited supply of trophic support by their respective target areas. However, some of the neurons die when their axons have not yet reached their target, thus suggesting that additional causes of developmental cell death exist. Semaphorin 3A (Sema3A), in addition to its function as a guidance cue and mediator of timing and fasciculation of motor and sensory axon outgrowth, can also induce death of sensory neurons in vitro. However, it is unknown whether Neuropilin-1 (Npn-1), its binding receptor in axon guidance, also mediates the death-inducing activity. We show here that abolished Sema3A-Npn-1 signaling does not influence the cell death patterns of motor or sensory neurons in mouse during the developmental wave of programmed cell death. The number of motor and sensory neurons was unchanged at embryonic day 15.5 when this wave is concluded. Interestingly, the defasciculation of early motor and sensory projections that is observed in the absence of Sema3A or Npn-1 persists to postnatal stages. Thus, Sema3A-Npn-1 signaling plays an important role in the guidance and fasciculation of motor and sensory axons but does not contribute to the developmental elimination of these neurons. [source]


Genetic mapping of Foxb1-cell lineage shows migration from caudal diencephalon to telencephalon and lateral hypothalamus

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2008
Tianyu Zhao
Abstract The hypothalamus is a brain region with vital functions, and alterations in its development can cause human disease. However, we still do not have a complete description of how this complex structure is put together during embryonic and early postnatal stages. Radially oriented, outside-in migration of cells is prevalent in the developing hypothalamus. In spite of this, cell contingents from outside the hypothalamus as well as tangential hypothalamic migrations also have an important role. Here we study migrations in the hypothalamic primordium by genetically labeling the Foxb1 diencephalic lineage. Foxb1 is a transcription factor gene expressed in the neuroepithelium of the developing neural tube with a rostral expression boundary between caudal and rostral diencephalon, and therefore appropriate for marking migrations from caudal levels into the hypothalamus. We have found a large, longitudinally oriented migration stream apparently originating in the thalamic region and following an axonal bundle to end in the anterior portion of the lateral hypothalamic area. Additionally, we have mapped a specific expansion of the neuroepithelium into the rostral diencephalon. The expanded neuroepithelium generates abundant neurons for the medial hypothalamus at the tuberal level. Finally, we have uncovered novel diencephalon-to-telencephalon migrations into septum, piriform cortex and amygdala. [source]


Developmental changes in the BDNF-induced modulation of inhibitory synaptic transmission in the Kölliker,Fuse nucleus of rat

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2007
Miriam Kron
Abstract The Kölliker,Fuse nucleus (KF), part of the pontine respiratory group, is involved in the control of respiratory phase duration, and receives both excitatory and inhibitory afferent input from various other brain regions. There is evidence for developmental changes in the modulation of excitatory inputs to the KF by the neurotrophin brain-derived neurotrophic factor (BDNF). In the present study we investigated if BDNF exerts developmental effects on inhibitory synaptic transmission in the KF. Recordings of inhibitory postsynaptic currents (IPSCs) in KF neurons in a pontine slice preparation revealed general developmental changes. Recording of spontaneous and evoked IPSCs (sIPSCs, eIPSCS) revealed that neonatally the ,-aminobutyric acid (GABA)ergic fraction of IPSCs was predominant, while in later developmental stages glycinergic neurotransmission significantly increased. Bath-application of BDNF significantly reduced sIPSC frequency in all developmental stages, while BDNF-mediated modulation on eIPSCs showed developmental differences. The eIPSCs mean amplitude was uniformly and significantly reduced following BDNF application only in neurons from rats younger than postnatal day 10. At later postnatal stages the response pattern became heterogeneous, and both augmentations and reductions of eIPSC amplitudes occurred. All BDNF effects on eIPSCs and sIPSCs were reversed with the tyrosine kinase receptor-B inhibitor K252a. We conclude that developmental changes in inhibitory neurotransmission, including the BDNF-mediated modulation of eIPSCs, relate to the postnatal maturation of the KF. The changes in BDNF-mediated modulation of IPSCs in the KF may have strong implications for developmental changes in synaptic plasticity and the adaptation of the breathing pattern to afferent inputs. [source]


Coronin 3 and its role in murine brain morphogenesis

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2005
Andreas Hasse
Abstract Coronins belong to the fundamental WD40-repeat proteins. They are mainly found at the submembraneous area, they bind F-actin in vitro, and most of the seven mammalian coronins have unclear roles. Coronin 3 is abundantly expressed in the adult CNS. All murine brain areas express coronin 3 during embryogenesis and the first postnatal stages. Expression in grey matter decreases postnatally, except for hippocampal pyramidal and dentate gyrus neurons, and cerebellar Purkinje cells, while levels in white matter increase in the course of myelination. Consistently, coronin 3 is abundant in differentiating neuro-2a and PC-12 cells and in primary oligodendrocytes. Treatment with PKC activator PMA reduced coronin 3 protein levels. To address its functions, neuro-2a and PC-12 cells were transfected with GFP-tagged coronin 3 versions. Full-length coronin 3 among other areas localized to outgrowing neurites, whereas truncated proteins efficiently suppressed neurite formation. Our results favour a role for coronin 3 in neuron morphogenesis and possibly migration. [source]


Myelination triggers local loss of axonal CNR/protocadherin, family protein expression

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2004
Hirofumi Morishita
Abstract The cadherin-related neuronal receptor (CNR)/protocadherin (Pcdh) , family is one of the diverse protocadherin families expressed in developing axons. We observed a strong axonal expression of these proteins at late embryonic and early postnatal stages corresponding to regions where fibers had not yet been myelinated. We therefore followed the postnatal localization of CNR/Pcdh, protein in major axonal tracts, such as the internal capsule, lateral olfactory tract, and optic nerve, and found that its axonal localization was dramatically lost in parallel with the increased expression of myelin markers. Moreover, the hypomyelinated optic nerve tracts of the myelin-deficient Shiverer mouse exhibited elevated levels of CNR/Pcdh, expression. These axonal expression patterns of CNR/Pcdh, in wild-type and Shiverer mice were similar to those of growth associated protein 43 (GAP-43) and L1, both of which are associated with axonal maturation. Thus, myelination may be a trigger for the local loss of axonal CNR/Pcdh, protein, and this process may be important in the maturation of neural circuits. [source]


Distinct spatio-temporal expression of ABCA and ABCG transporters in the developing and adult mouse brain

JOURNAL OF NEUROCHEMISTRY, Issue 1 2005
Masanori Tachikawa
Abstract Using in situ hybridization for the mouse brain, we analyzed developmental changes in gene expression for the ATP-binding cassette (ABC) transporter subfamilies ABCA1,4 and 7, and ABCG1, 2, 4, 5 and 8. In the embryonic brains, ABCA1 and A7 were highly expressed in the ventricular (or germinal) zone, whereas ABCA2, A3 and G4 were enriched in the mantle (or differentiating) zone. At the postnatal stages, ABCA1 was detected in both the gray and white matter and in the choroid plexus. On the other hand, ABCA2, A3 and A7 were distributed in the gray matter. In addition, marked up-regulation of ABCA2 occurred in the white matter at 14 days-of-age when various myelin protein genes are known to be up-regulated. In marked contrast, ABCA4 was selective to the choroid plexus throughout development. ABCG1 was expressed in both the gray and white matters, whereas ABCG4 was confined to the gray matter. ABCG2 was diffusely and weakly detected throughout the brain at all stages examined. Immunohistochemistry of ABCG2 showed its preferential expression on the luminal membrane of brain capillaries. Expression signals for ABCG5 and G8 were barely detected at any stages. The distinct spatio-temporal expressions of individual ABCA and G transporters may reflect their distinct cellular expressions in the developing and adult brains, presumably, to regulate and maintain lipid homeostasis in the brain. [source]


Differential distribution of voltage-gated potassium channels Kv 1.1,Kv1.6 in the rat retina during development

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 1 2007
M. Höltje
Abstract The discharge behavior of neurons depends on a variable expression and sorting pattern of voltage-dependent potassium (Kv) channels that changes during development. The rodent retina represents a neuronal network whose main functions develop after birth. To obtain information about neuronal maturation we analyzed the expression of subunits of the Kv1 subfamily in the rat retina during postnatal development using immunocytochemistry and immunoelectron microscopy. At postnatal day 5 (P5) all the ,-subunits of Kv1.1,Kv1.6 channels were found to be expressed in the ganglion cell layer (GCL), most of them already at P1 or P3. Their expression upregulates postnatally and the pattern and distribution change in an isoform-specific manner. Additionally Kv1 channels are found in the outer and inner plexiform layer (OPL, IPL) and in the inner nuclear layer (INL) at different postnatal stages. In adult retina the Kv 1.3 channel localizes to the inner and outer segments of cones. In contrast, Kv1.4 is highly expressed in the outer retina at P8. In adult retina Kv1.4 occurs in rod inner segments (RIS) near the connecting cilium where it colocalizes with synapse associated protein SAP 97. By using confocal laser scanning microscopy we showed a differential localization of Kv1.1-1.6 to cholinergic amacrine and rod bipolar cells of the INL of the adult retina. © 2006 Wiley-Liss, Inc. [source]