Postharvest Technologies (postharvest + technology)

Distribution by Scientific Domains


Selected Abstracts


Correction to Malcolm Bourne paper, "Selection and Use of Postharvest Technologies as a Component of the Food Chain", p CRH43 in March issue

JOURNAL OF FOOD SCIENCE, Issue 3 2004
Article first published online: 31 MAY 200
No abstract is available for this article. [source]


Selection and Use of Postharvest Technologies as a Component of the Food Chain

JOURNAL OF FOOD SCIENCE, Issue 2 2004
MALCOLM C. BOURNE
ABSTRACT: Postharvest technologies refer to the stabilization and storage of unprocessed or minimally processed foods from the time of harvest until final preparation for human consumption. There is a special emphasis on seasonal crops, and simple, labor-intensive, capital-sparing technologies suitable for developing countries where food spoilage rates are high and malnutrition is prevalent. The first step is to determine the major spoilage vectors for each type of food and then identify a technology that will control that vector. For cereal grains the major spoilage vectors are mold, insects, rodents, and other vertebrate pests. Mold is controlled by prompt and adequate drying to a water activity below 0.7. Insects are controlled by good housekeeping, and use of insecticides and fumigants. Rodents are controlled by baits, traps, fumigants, and rodent-proof storage structures. For fruits, vegetables, roots, and tubers the main spoilage vectors are bruising, rotting, senescence, and wilting. Bruising is avoided by careful handling and use of shock-resistant packaging. Rotting is controlled by good housekeeping, gentle handling to avoid breaking the skin, cool storage, and use of preservatives. Senescence is retarded by cold storage or controlled-atmosphere storage. Wilting is controlled by high humidity and cold storage. Growth of microbes is the major spoilage of fish and other foods of animal origin. This is controlled by refrigerated or frozen storage, drying, freezing, or canning. Most spoilage vectors accelerate as the temperature and humidity increase; this makes it more difficult to control spoilage in tropical than in temperate regions. [source]


Correction to Malcolm Bourne paper, "Selection and Use of Postharvest Technologies as a Component of the Food Chain", p CRH43 in March issue

JOURNAL OF FOOD SCIENCE, Issue 1 2004
Article first published online: 28 JUN 200
First page of article [source]


Selection and Use of Postharvest Technologies as a Component of the Food Chain

JOURNAL OF FOOD SCIENCE, Issue 2 2004
MALCOLM C. BOURNE
ABSTRACT: Postharvest technologies refer to the stabilization and storage of unprocessed or minimally processed foods from the time of harvest until final preparation for human consumption. There is a special emphasis on seasonal crops, and simple, labor-intensive, capital-sparing technologies suitable for developing countries where food spoilage rates are high and malnutrition is prevalent. The first step is to determine the major spoilage vectors for each type of food and then identify a technology that will control that vector. For cereal grains the major spoilage vectors are mold, insects, rodents, and other vertebrate pests. Mold is controlled by prompt and adequate drying to a water activity below 0.7. Insects are controlled by good housekeeping, and use of insecticides and fumigants. Rodents are controlled by baits, traps, fumigants, and rodent-proof storage structures. For fruits, vegetables, roots, and tubers the main spoilage vectors are bruising, rotting, senescence, and wilting. Bruising is avoided by careful handling and use of shock-resistant packaging. Rotting is controlled by good housekeeping, gentle handling to avoid breaking the skin, cool storage, and use of preservatives. Senescence is retarded by cold storage or controlled-atmosphere storage. Wilting is controlled by high humidity and cold storage. Growth of microbes is the major spoilage of fish and other foods of animal origin. This is controlled by refrigerated or frozen storage, drying, freezing, or canning. Most spoilage vectors accelerate as the temperature and humidity increase; this makes it more difficult to control spoilage in tropical than in temperate regions. [source]


Physiological, hormonal and molecular mechanisms regulating chilling injury in horticultural species.

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 4 2009
Postharvest technologies applied to reduce its impact
Abstract The storage of fruits and vegetables at low temperature near the freezing point is the foremost technology applied to retard postharvest ripening and to extend the shelf-life period of agricultural products. However, most tropical and subtropical produce is sensitive to chilling injury, which constitutes a set of physiological alterations caused by exposure to low temperatures for variable time periods, to the detriment of quality. This article is a thorough review of the physiological, hormonal and molecular mechanisms involved in the induction and development of this physiopathy. Also, the different postharvest technologies of a chemical, physical or biotechnological nature assayed in research or applied in the agro-food industry with the aim of inhibiting or delaying the emergence of chilling injury in sensitive plant produce of agricultural interest are reviewed. Copyright 2009 Society of Chemical Industry [source]


EFFECT OF OXYGEN CONCENTRATION ON THE BIOCHEMICAL AND CHEMICAL CHANGES OF STORED LONGAN FRUIT

JOURNAL OF FOOD QUALITY, Issue 1 2009
G. CHENG
ABSTRACT Longan fruits were stored for 6 days in atmosphere of 5, 21 (air) or 60% O2 (balance N2) at 28C and 90,95% relative humidity to examine effects of low and high O2 concentration on enzymatic browning and quality attributes of the fruit. Changes in pericarp browning, pulp breakdown, disease development, total phenol content, activities of phenol metabolism-associated enzymes, relative leakage rate, ,,, -diphenyl- , -picrylhydrazy (DPPH) radical scavenging activity, and contents of total soluble solids, titratable acidity and ascorbic acid were evaluated. Storage of fruit in a 5% O2 atmosphere markedly delayed pericarp browning in association with maintenance of high total phenolic content and reduced activities of polyphenol oxidase (PPO), peroxidase (POD) and phenylalanine ammonia lyase. Moreover, the fruit stored in a 5% O2 atmosphere exhibited a lower relative leakage rate and higher DPPH radical scavenging activity than fruit stored in air. This presumably was beneficial in maintaining compartmentation of enzymes and substrates, and thus, reducing pericarp browning. Pulp breakdown and disease development were also reduced by exposure to a 5% oxygenatmosphere. On the contrary, exposure of longan fruit to a 60% O2 atmosphere accelerated pericarp browning, pulp breakdown and decay development. PPO and POD activities and relative leakage rate were similar for control and 60% O2 -treated fruit after 4 and 6 days of storage. Furthermore, treatment with 60% O2 significantly decreased the phenolic content and DPPH scavenging activity of fruit. In addition, exposure to 5 or 60% O2 resulted in a higher level of total soluble solids, but a lower level of ascorbic acid of longan fruit flesh. In conclusion, exposure to a 5% O2 atmosphere showed great potential to reduce pericarp browning and extend shelf life of longan fruit. PRACTICAL APPLICATIONS Pericarp browning and pulp breakdown are the major causes of deterioration in postharvest longan. Conventional controlled atmosphere with low O2 and high CO2 is effective in maintaining quality and extending shelf life of fruits and vegetables, including inhibition of tissue browning. In this study, 5%-controlled atmosphere reduced significantly pericarp browning, pulp breakdown and rot development. It could potentially be useful as a postharvest technology of longan fruit for reducing or replacing the use of chemicals such as SO2 and fungicides, but it requires further investigation. [source]