Positive Regulation (positive + regulation)

Distribution by Scientific Domains


Selected Abstracts


Positive Regulation of Adult Bone Formation by Osteoblast-Specific Transcription Factor Osterix,,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2009
Wook-Young Baek
Abstract Osterix (Osx) is essential for osteoblast differentiation and bone formation, because mice lacking Osx die within 1 h of birth with a complete absence of intramembranous and endochondral bone formation. Perinatal lethality caused by the disruption of the Osx gene prevents studies of the role of Osx in bones that are growing or already formed. Here, the function of Osx was examined in adult bones using the time- and site-specific Cre/loxP system. Osx was inactivated in all osteoblasts by Col1a1-Cre with the activity of Cre recombinase under the control of the 2.3-kb collagen promoter. Even though no bone defects were observed in newborn mice, Osx inactivation with 2.3-kb Col1a1-Cre exhibited osteopenia phenotypes in growing mice. BMD and bone-forming rate were decreased in lumbar vertebra, and the cortical bone of the long bones was thinner and more porous with reduced bone length. The trabecular bones were increased, but they were immature or premature. The expression of early marker genes for osteoblast differentiation such as Runx2, osteopontin, and alkaline phosphatase was markedly increased, but the late marker gene, osteocalcin, was decreased. However, no functional defects were found in osteoclasts. In summary, Osx inactivation in growing bones delayed osteoblast maturation, causing an accumulation of immature osteoblasts and reducing osteoblast function for bone formation, without apparent defects in bone resorption. These findings suggest a significant role of Osx in positively regulating osteoblast differentiation and bone formation in adult bone. [source]


Positive regulation of Bacillus subtilis ackA by CodY and CcpA: establishing a potential hierarchy in carbon flow

MOLECULAR MICROBIOLOGY, Issue 3 2006
Robert P. Shivers
Summary Conversion of pyruvate to acetate via the phosphotransacetylase-acetate kinase pathway generates ATP and is a major overflow pathway under conditions of carbon and nitrogen excess. In Bacillus subtilis, this pathway is positively regulated by CcpA, a global regulator of carbon metabolism genes. Transcription of the acetate kinase gene (ackA) proved to be activated as well by a second global regulatory protein, CodY. Expression of an ackA,lacZ fusion was reduced in a codY mutant strain. CodY was found to bind in vitro to two sites in the ackA promoter region and to stimulate ackA transcription in a run-off transcription assay. This is the first known case of direct positive regulation by CodY. CodY and CcpA were found to bind to neighbouring sites and their effects were additive both in vivo and in vitro. Surprisingly, positive regulation by CodY, unlike repression, responded primarily to only one type of effector molecule. That is, branched-chain amino acids (BCAAs) served as more potent co-activators of CodY-dependent ackA transcription than did GTP. Given the roles of CcpA and CodY in regulating genes whose products determine the metabolic fate of pyruvate, these two proteins may act together to mediate a hierarchical conversion of pyruvate to its many potential products. [source]


Pax3 and Dach2 positive regulation in the developing somite

DEVELOPMENTAL DYNAMICS, Issue 3 2002
G. Kardon
Abstract In vertebrates, skeletal muscles of the body arise from cells of somitic origin. Recently, somite culture experiments have identified a set of genes, including Pax3, Six1, Eya2, and Dach2, that appear to play an important role in early myogenesis during somite development (Heanue et al. [1999] Genes Dev. 13:3231,3243). In somite culture Pax3, Six1, Eya2, and Dach2 not only function to activate myogenesis, but they form a complex network regulating each other's transcription. We sought to examine whether this putative Pax3/Six1/Eya2/Dach2 network of regulation actually functions in vivo. In particular, we tested whether Pax3 and Dach2 participate in a positive regulatory feedback loop in vivo as they do in culture. To test in vivo Pax3/Dach2 interregulation, we took advantage of the known dependence of both factors on ectodermal signals. Somites isolated from the overlying ectoderm lose expression of Pax3 and Dach2. Therefore, we attempted to rescue Pax3 or Dach2 expression in somites isolated from the ectoderm by retroviral misexpression of the complementary factor. Indeed misexpression of Pax3 or Dach2 resulted in rescue of Dach2 or Pax3, respectively. These rescue experiments demonstrate that Pax3 and Dach2 positively regulate each other's expression in vivo and support the validity of the Pax3/Six1/Eya2/Dach 2 network in regulating myogenesis. © 2002 Wiley-Liss, Inc. [source]


Electrochemically Induced Modulation of the Catalytic Activity of a Reversible Redoxsensitive Riboswitch

ELECTROANALYSIS, Issue 9 2008
Denise Strohbach
Abstract Over the past decade, RNA conformation has been shown to respond to external stimuli. Thus, dependent on the presence of a high affinity ligand, specifically designed ribozymes can be regulated in a classical allosteric way. In this scenario, a binding event in one part of the RNA structure induces conformational changes in a separated part, which constitutes the catalytic centre. As a result activity is switched on (positive regulation) or off (negative regulation). We have developed a hairpin aptazyme responding to flavine mononucleotide (FMN). Ribozyme activity is dependent on binding of FMN and thus is switched on in the presence of FMN in its oxidized form. Under reducing conditions, however, FMN changes its molecular geometry, which is associated with loss of binding and consequently down-regulation of ribozyme activity. While in previous experiments sodium dithionite was used for reduction of FMN, we now present an assay for electrochemically induced activity switching. We have developed an electrochemical microcell that allows for iterative cycles of reduction/oxidation of FMN in an oxygen free atmosphere and thus for reversible switching of ribozyme activity. The reaction proceeds in droplets of 3 to 10,,L at micro- to nanomolar concentrations of the reaction components. [source]


Serotonin mediates oestrogen stimulation of cell proliferation in the adult dentate gyrus

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2001
Mounira Banasr
Abstract Characterizing the mechanisms by which endogenous factors stimulate neurogenesis is of special interest in view of the possible implication of newly generated cells in hippocampal functions or disorders. The aim of this study was to determine whether serotonin (5-HT) and oestradiol (E2) act through a common pathway to increase cell proliferation in the adult dentate gyrus (DG). We also investigated the effects of long-lasting changes in oestrogen levels on cell proliferation. Combining ovariectomy with inhibition of 5-HT synthesis using p -chlorophenylalanine (PCPA) treatment produced approximately the same decreases in the number of bromodeoxyuridine (BrdU) and PSA-NCAM immunolabelled cells in the subgranular layer as ovariectomy alone. Administration of 5-hydroxytryptophan (5-HTP) restored cell proliferation primarily decreased by ovariectomy, whereas oestradiol was unable to reverse this change in ovariectomized rats treated with PCPA. These findings demonstrate that 5-HT mediates oestrogen stimulation of cell proliferation in adult dentate gyrus. However, increase in ovarian hormones during pregnancy has no effect on dentate cell proliferation. This finding suggests that concomitant changes in other factors, such as glucocorticoids, may counterbalance the positive regulation of cell proliferation by 5-HT and oestradiol. Finally, oestrogen may regulate structural plasticity by stimulating PSA-NCAM expression independently of neurogenesis, as shown for instance by the increases in the number of PSA-NCAM labelled cells in pregnants. As 5-HT and oestrogen are involved in mood disorders, our data suggest that the positive regulation of cell proliferation and neuroplasticity by these two factors may contribute to restore hippocampal connectivity in depressive patients. [source]


Activated Rac1, but not the tumorigenic variant Rac1b, is ubiquitinated on Lys 147 through a JNK-regulated process

FEBS JOURNAL, Issue 2 2008
Orane Visvikis
Ubiquitination and proteasomal degradation have recently emerged as an additional level of regulation of activated forms of Rho GTPases. To characterize this novel regulatory pathway and to gain insight into its biological significance, we studied the ubiquitination of two constitutively activated forms of Rac1, i.e. the mutationally activated Rac1L61, and the tumorigenic splice variant Rac1b, which is defective for several downstream signaling pathways, including JNK activation. Whereas Rac1L61 undergoes polyubiquitination and subsequent proteasomal degradation in HEK293 cells, Rac1b is poorly ubiquitinated and appears to be much more resistant to proteasomal degradation than Rac1L61. Mutational analysis of all lysine residues in Rac1 revealed that the major target site for Rac1 ubiquitination is Lys147, a solvent-accessible residue that has a similar conformation in Rac1b. Like Rac1L61, Rac1b was found to be largely associated with plasma membrane, a known prerequisite for Rac1 ubiquitination. Interestingly, Rac1b ubiquitination could be stimulated by coexpression of Rac1L61, suggesting positive regulation of Rac1 ubiquitination by Rac1 downstream signaling. Indeed, ubiquitination of Rac1L61 is critically dependent on JNK activation. In conclusion: (a) Rac1b appears to be more stable than Rac1L61 with regard to the ubiquitin,proteasome system, and this may be of importance for the expression and tumorigenic capacity of Rac1b; and (b) ubiquitination of activated Rac1 occurs through a JNK-activated process, which may explain the defective ubiquitination of Rac1b. The JNK-dependent activation of Rac1 ubiquitination would create a regulatory loop allowing the cell to counteract excessive activation of Rac1 GTPase. [source]


The second phase activation of protein kinase C , at late G1 is required for DNA synthesis in serum-induced cell cycle progression

GENES TO CELLS, Issue 4 2003
Koichi Kitamura
Background: Cell lines that stably over-express protein kinase C (PKC) , frequently show a decrease in growth rate and saturation density, leading to the hypothesis that PKC, has a negative effect on cell proliferation. However, the mode of PKC, activation, the cell cycle stage requiring PKC, activity, and the exact role of PKC, at that stage remains unknown. Results: Here we show that the treatment of quiescent fibroblasts with serum activates PKC, at two distinct time points, within 10 min after serum treatment, and for a longer duration between 6 and 10 h. This biphasic activation correlates with the phosphorylation of Thr-505 at the activation loop of PKC,. Importantly, an inhibitor of PKC,, rottlerin, suppresses the biphasic activation of PKC,, and suppression of the second phase of PKC, activation is sufficient for the suppression of DNA synthesis. Consistent with this, the transient over-expression of PKC, mutant molecules lacking kinase activity suppresses serum-induced DNA synthesis. These results imply that PKC, plays a positive role in cell cycle progression. While the over-expression of PKC, enhances serum-induced DNA synthesis, this was not observed for PKC,. Similar experiments using a series of PKC,/, chimeras showed that the carboxyl-terminal 51 amino acids of PKC, are responsible for the stimulatory effect. On the other hand, the over-expression of PKC, suppresses cell entry into M-phase, being consistent with the previous studies based on stable over-expressors. Conclusions: We conclude that PKC, plays a role in the late-G1 phase through the positive regulation of cell-cycle progression, in addition to negative regulation of the entry into M-phase. [source]


BEX2 regulates mitochondrial apoptosis and G1 cell cycle in breast cancer

INTERNATIONAL JOURNAL OF CANCER, Issue 7 2010
Ali Naderi
Abstract We have recently demonstrated that BEX2 is differentially expressed in primary breast tumors and BEX2 expression is required for the Nerve Growth factor inhibition of ceramide-induced apoptosis in breast cancer. In this study we investigate the functional role of BEX2 in the survival and growth of breast cancer cells. We demonstrate that BEX2 downregulation induces mitochondrial apoptosis and sensitizes breast cancer cells to the pro-apoptotic effects of ceramide, doxorubicin and staurosporine. In addition, BEX2 overexpression protects the breast cancer cells against mitochondrial apoptosis. We show that this effect of BEX2 is mediated through the modulation of Bcl-2 protein family, which involves the positive regulation of anti-apoptotic member Bcl-2 and the negative regulation of pro-apoptotic members BAD, BAK1 and PUMA. Moreover, our data suggests that BEX2 expression is required for the normal cell cycle progression during G1 in breast cancer cells through the regulation of cyclin D1 and p21. To further support the significance of BEX2 in the pathogenesis of breast cancer we demonstrate that BEX2 overexpression is associated with a higher activation of the Bcl-2/NF-,B pathway in primary breast tumors. Furthermore, we show that BEX2 downregulation results in a higher expression and activity of protein phosphatase 2A. The modulation of protein phosphatase 2A, which is also known to mediate the cellular response to ceramide, provides a possible mechanism to explain the BEX2-mediated cellular effects. This study demonstrates that BEX2 has a significant role in the regulation of mitochondrial apoptosis and G1 cell cycle in breast cancer. [source]


The regulation of integrin-linked kinase in human platelets: evidence for involvement in the regulation of integrin ,2,1

JOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 8 2004
J. M. Stevens
Summary.,Background: Activation of the platelet integrin ,2,1 is closely regulated due to the high thrombogenicity of its ligand. As a ,1 interacting kinase, ILK represents a candidate intracellular regulator of ,2,1 in human platelets. Objectives We investigated the regulation of ILK in human platelets and the role of ILK in regulating ,2,1 activation in HEL cells, a megakaryocytic cell line. Methods: An in-vitro kinase assay was used to determine the effect of platelet agonists on ILK kinase activity together with the contribution of PI3K and PKC on ILK activation. Interaction of ILK with ,1 -integrin subunits was investigated by coimmunoprecipitation and the role of ILK in regulating ,2,1 function assessed by overexpression studies in HEL cells. Results: We report that collagen and thrombin modulate ILK kinase activity in human platelets in an aggregation-independent manner. Furthermore, ILK activity is dually regulated by PI3K and PKC in thrombin-stimulated platelets and regulated by PI3K in collagen-stimulated cells. ILK associates with the ,1 -integrin subunits immunoprecipitated from platelet cell lysates, an association which increased upon collagen stimulation. Overexpression of ILK in HEL cells enhanced ,2,1 -mediated adhesion whereas overexpression of kinase-dead ILK reduced adhesion, indicating a role for this kinase in the positive regulation of ,2,1. Conclusions: Our findings that ILK regulates ,2,1 in HEL cells, is activated in platelets and associates with ,1 -integrins, raise the possibility that it may play a key role in adhesion events upon agonist stimulation of platelets. [source]


Positive regulation of Bacillus subtilis ackA by CodY and CcpA: establishing a potential hierarchy in carbon flow

MOLECULAR MICROBIOLOGY, Issue 3 2006
Robert P. Shivers
Summary Conversion of pyruvate to acetate via the phosphotransacetylase-acetate kinase pathway generates ATP and is a major overflow pathway under conditions of carbon and nitrogen excess. In Bacillus subtilis, this pathway is positively regulated by CcpA, a global regulator of carbon metabolism genes. Transcription of the acetate kinase gene (ackA) proved to be activated as well by a second global regulatory protein, CodY. Expression of an ackA,lacZ fusion was reduced in a codY mutant strain. CodY was found to bind in vitro to two sites in the ackA promoter region and to stimulate ackA transcription in a run-off transcription assay. This is the first known case of direct positive regulation by CodY. CodY and CcpA were found to bind to neighbouring sites and their effects were additive both in vivo and in vitro. Surprisingly, positive regulation by CodY, unlike repression, responded primarily to only one type of effector molecule. That is, branched-chain amino acids (BCAAs) served as more potent co-activators of CodY-dependent ackA transcription than did GTP. Given the roles of CcpA and CodY in regulating genes whose products determine the metabolic fate of pyruvate, these two proteins may act together to mediate a hierarchical conversion of pyruvate to its many potential products. [source]


Vitamin D3 upregulated protein 1 (VDUP1) is a regulator for redox signaling and stress-mediated diseases

THE JOURNAL OF DERMATOLOGY, Issue 10 2006
Jin Woong CHUNG
ABSTRACT Vitamin D3 upregulated protein 1 (VDUP1) is a 46-kDa multifunctional protein, initially isolated in HL-60 cells as a protein of which expression is upregulated by vitamin D3 administration. Subsequently, it was identified independently by investigators from diverse scientific backgrounds as a thioredoxin binding protein that negatively regulates the expression and the activity of thioredoxin, and is thus involved in redox regulation. Further studies have revealed that VDUP1 plays multiple roles in a wide range of cellular processes such as proliferation or apoptosis. Recently, it has been reported that VDUP1 is also involved in the immune system via positive regulation of natural killer development. In addition, VDUP1 has been revealed to be associated with the fatty acid utilization. In the present review, we discuss the novel aspects of VDUP1 function as well as the historical background of VDUP1. Future studies will explore the diagnostic and therapeutic potential of modulating the function of VDUP1 in vivo. [source]


The Arabidopsis TALE homeobox gene ATH1 controls floral competency through positive regulation of FLC

THE PLANT JOURNAL, Issue 5 2007
Marcel Proveniers
Summary Floral induction is controlled by a plethora of genes acting in different pathways that either repress or promote floral transition at the shoot apical meristem (SAM). During vegetative development high levels of floral repressors maintain the Arabidopsis SAM as incompetent to respond to promoting factors. Among these repressors, FLOWERING LOCUS C (FLC) is the most prominent. The processes underlying downregulation of FLC in response to environmental and developmental signals have been elucidated in considerable detail. However, the basal induction of FLC and its upregulation by FRIGIDA (FRI) are still poorly understood. Here we report the functional characterization of the ARABIDOPSIS THALIANA HOMEOBOX 1 (ATH1) gene. A function of ATH1 in floral repression is suggested by a gradual downregulation of ATH1 in the SAM prior to floral transition. Further evidence for such a function of ATH1 is provided by the vernalization-sensitive late flowering of plants that constitutively express ATH1. Analysis of lines that differ in FRI and/or FLC allele strength show that this late flowering is caused by upregulation of FLC as a result of synergism between ATH1 overexpression and FRI. Lack of ATH1, however, results in attenuated FLC levels independently of FRI, suggesting that ATH1 acts as a general activator of FLC expression. This is further corroborated by a reduction of FLC -mediated late flowering in fca-1 and fve-1 autonomous pathway backgrounds when combined with ath1. Since other floral repressors of the FLC clade are not significantly affected by ATH1, we conclude that ATH1 controls floral competency as a specific activator of FLC expression. [source]