Home About us Contact | |||
Pore Water Pressures (pore + water_pressure)
Selected AbstractsGelifluction: viscous flow or plastic creep?EARTH SURFACE PROCESSES AND LANDFORMS, Issue 12 2003Charles Harris Abstract This paper reports results from two scaled centrifuge modelling experiments, designed to simulate thaw-related geli,uction. A planar 12° prototype slope was modelled in each experiment, using the same natural ,ne sandy silt soil. However two different scales were used. In Experiment 1, the model scale was 1/10, tested in the centrifuge at 10 gravities (g) and in Experiment 2, the scale was 1/30, tested at 30 g. Centrifuge scaling laws indicate that the time scaling factor for thaw consolidation between model and prototype is N2, where N is the number of gravities under which the model was tested. However, the equivalent time scaling for viscous ,ow is 1/1. If geli,uction is a viscosity-controlled ,ow process, scaling con,icts will therefore arise during centrifuge modelling of thawing slopes, and rates of displacement will not scale accurately to the prototype. If, however, no such scaling con,icts are observed, we may conclude that geli,uction is not controlled by viscosity, but rather by elasto-plastic soil deformation in which frictional shear strength depends on effective stress, itself a function of the thaw consolidation process. Models were saturated, consolidated and frozen from the surface downwards on the laboratory ,oor. The frozen models were then placed in the geotechnical centrifuge and thawed from the surface down. Each model was subjected to four freeze,thaw cycles. Soil temperatures and pore water pressures were monitored, and frost heave, thaw settlement and downslope displacements measured. Pore water pressures, displacement rates and displacement pro,les re,ecting accumulated shear strain, were all similar at the two model scales and volumetric soil transport per freeze,thaw cycle, when scaled to prototype, were virtually identical. Displacement rates and pro,les were also similar to those observed in earlier full-scale laboratory ,oor experiments. It is concluded therefore that the modelled geli,uction was not a time-dependent viscosity-controlled ,ow phenomenon, but rather elasto-plastic in nature. A ,rst approximation ,,ow' law is proposed, based on the ,Cam Clay' constitutive model for soils. Copyright © 2003 John Wiley & Sons, Ltd. [source] Experimental dehydration kinetics of serpentinite using pore volumometryJOURNAL OF METAMORPHIC GEOLOGY, Issue 4 2007S. LLANA-FÚNEZ Abstract A series of dehydration experiments was carried out on both intact rock and cold-pressed powdered samples of serpentinite at temperatures in the range 535,610 °C, 100,170 °C above the onset of the breakdown temperature of 435 °C. Pore water pressures near 120 MPa were servo-controlled using a pore volumometer that also allowed dehydration reaction progress to be monitored through measurement of the amount of evolved water. Effective hydrostatic confining pressures were varied between 0 and 113 MPa. The reaction rate of intact specimens of initially near-zero porosity was constant up to 50,80% reaction progress at any given temperature, but decreased progressively as transformation approached completion. Water expulsion rates were not substantially affected by elevation of effective pressures that remained insufficient to cause major pore collapse. An Arrhenius relation links reaction rate to temperature with an activation enthalpy of 429 ± 201 and 521 ± 52 kJ mol,1 for powdered and intact specimens, respectively. Microstructural study of intact specimens showed extensive nucleation beginning at pre-existing cracks, veins and grain boundaries, and progressing into the interior of the lizardite grains. Extrapolation of these data towards equilibrium temperature provides an upper bound on the kinetics of this reaction in nature. [source] Experimental study of rill bank collapseEARTH SURFACE PROCESSES AND LANDFORMS, Issue 2 2007Jovan R. Stefanovic Abstract Rill bank collapse is an important component in the adjustment of channel morphology to changes in discharge and sediment flux. Sediment inputs from bank collapse cause abrupt changes in flow resistance, flow patterns and downstream sediment concentrations. Generally, bank retreat involves gradual lateral erosion, caused by flow shear stress, and sudden bank collapse, triggered by complex interactions between channel flow and bank and soil water conditions. Collapse occurs when bank height exceeds the critical height where gravitational forces overcome soil shear strength. An experimental study examined conditions for collapse in eroding rill channels. Experiments with and without a deep water table were carried out on a meandering rill channel in a loamy sand and sandy loam in a laboratory flume under simulated rainfall and controlled runon. Different discharges were used to initiate knickpoint and rill incision. Soil water dynamics were monitored using microstandpipes, tensiometers and time domain reflectometer probes (TDR probes). Bank collapse occurred with newly developed or rising pre-existing water tables near rill banks, associated with knickpoint migration. Knickpoint scour increased effective bank height, caused positive pore water pressure in the bank toe and reduced negative pore pressures in the unsaturated zone to near zero. Matric tension in unsaturated parts of the bank and a surface seal on the ,interrill' zone behind the bank enhanced stability, while increased effective bank height and positive pore water pressure at the bank toe caused instability. With soil water contents >35 per cent (sandy loam) and >23 per cent (loamy sand), critical bank heights were 0·11,0·12 m and 0·06,0·07 m, respectively. Bank toe undercutting at the outside of the rill bends also triggered instability. Bank displacement was quite different on the two soils. On the loamy sand, the failed block slid to the channel bed, revealing only the upper half of the failure plane, while on the sandy loam the failed block toppled forwards, exposing the failure plane for the complete bank height. This study has shown that it is possible to predict location, frequency and magnitude of the rill bank collapse, providing a basis for incorporation into predictive models for hillslope soil loss or rill network development. Copyright © 2006 John Wiley & Sons, Ltd. [source] Some numerical issues using element-free Galerkin mesh-less method for coupled hydro-mechanical problemsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 7 2009Mohammad Norouz Oliaei Abstract A new formulation of the element-free Galerkin (EFG) method is developed for solving coupled hydro-mechanical problems. The numerical approach is based on solving the two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Spatial variables in the weak form, i.e. displacement increment and pore water pressure increment, are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on a penalty method. Numerical stability of the developed formulation is examined in order to achieve appropriate accuracy of the EFG solution for coupled hydro-mechanical problems. Examples are studied and compared with closed-form or finite element method solutions to demonstrate the validity of the developed model and its capabilities. The results indicate that the EFG method is capable of handling coupled problems in saturated porous media and can predict well both the soil deformation and variation of pore water pressure over time. Some guidelines are proposed to guarantee the accuracy of the EFG solution for coupled hydro-mechanical problems. Copyright © 2008 John Wiley & Sons, Ltd. [source] Coupled simulation of wave propagation and water flow in soil induced by high-speed trainsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 11 2008P. Kettil Abstract The purpose of this paper is to simulate the coupled dynamic deformation and water flow that occur in saturated soils when subjected to traffic loads, which is a problem with several practical applications. The wave propagation causes vibrations leading to discomfort for passengers and people in the surroundings and increase wear on both the vehicle and road structure. The water flow may cause internal erosion and material transport in the soil. Further, the increased pore water pressure could reduce the bearing capacity of embankments. The saturated soil is modelled as a water-saturated porous medium. The traffic is modelled as a number of moving wheel contact loads. Dynamic effects are accounted for, which lead to a coupled problem with solid displacements, water velocity and pressure as primary unknowns. A finite element program has been developed to perform simulations. The simulations clearly demonstrate the induced wave propagation and water flow in the soil. The simulation technique is applicable to railway as well as road traffic. Copyright © 2007 John Wiley & Sons, Ltd. [source] Modelling of earth and water pressure development during diaphragm wall construction in soft clayINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 13 2004R. Schäfer Abstract The influence of a diaphragm wall construction on the stress field in a soft clayey soil is investigated by the use of a three-dimensional FE-model of seven adjacent wall panels. The installation procedure comprises the excavation and the subsequent pouring of each panel taking into account the increasing stiffness of the placed fresh concrete. The soft clay deposit is described by a visco-hypoplastic constitutive model considering the rheological properties and the small-strain stiffness of the soil. The construction process considerably affects the effective earth and pore water pressures adjacent to the wall. Due to concreting, a high excess pore water pressure arises, which dissipates during the following construction steps. The earth pressure finally shows an oscillating, distinct three-dimensional distribution along the retaining wall which depends on the installation sequence of the panels and the difference between the fresh concrete pressure and the total horizontal earth pressure at rest. In comparison to FE-calculations adopting the earth pressure at rest as initial condition, greater wall deflections and surface ground settlements during the subsequent pit excavation can be expected, as the average stress level especially in the upper half of the wall is increased by the construction procedure of the retaining structure. Copyright © 2004 John Wiley & Sons, Ltd. [source] A cyclic viscoelastic,viscoplastic constitutive model for clay and liquefaction analysis of multi-layered groundINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 2 2004Fusao Oka Abstract In order to estimate viscous effect of clay in the wide range of low to high level of strain, a cyclic viscoelastic,viscoplastic constitutive model for clay is proposed. First, we confirm the performance of the proposed model by simulating the cyclic undrained triaxial tests to determine the cyclic strength and deformation characteristics of a natural marine clay. Then, the proposed model is incorporated into an effective stress based liquefaction analysis method to estimate the effect of an intermediate clay layer on the behaviour of liquefiable sand layers. The seismic response against foreshocks, main shock as well as aftershocks of 1995 Hyogoken Nambu Earthquake is analysed in the present study. The difference of shear strength characteristics of the alluvial clay layer is one of the reasons why Port Island has a higher liquefaction potential than that of Rokko Island. The proposed model gives a good description of the damping characteristics of clay layer during large earthquakes. Acceleration responses in both clay layer and liquefiable sand layer just above it are damped due to viscous effect of clay. In the case of main shock and the following aftershocks that occurred within less than 9 days after main event, acceleration responses near ground surface are de-amplified due to the developed excess pore water pressure, while responses near ground surface are amplified before and long after the main event. Using the viscoelastic,viscoplastic model for clay layer, time history of acceleration response in upper liquefiable sand layer can be well calculated, in particular in the range of microtremor process after the main seismic motion. Copyright © 2004 John Wiley & Sons, Ltd. [source] Finite element formulation and algorithms for unsaturated soils.INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 9 2003Part I: Theory Abstract This paper presents a complete finite-element treatment for unsaturated soil problems. A new formulation of general constitutive equations for unsaturated soils is first presented. In the incremental stress,strain equations, the suction or the pore water pressure is treated as a strain variable instead of a stress variable. The global governing equations are derived in terms of displacement and pore water pressure. The discretized governing equations are then solved using an adaptive time-stepping scheme which automatically adjusts the time-step size so that the integration error in the displacements and pore pressures lies close to a specified tolerance. The non-linearity caused by suction-dependent plastic yielding, suction-dependent degree of saturation, and saturation-dependent permeability is treated in a similar way to the elastoplasticity. An explicit stress integration scheme is used to solve the constitutive stress,strain equations at the Gauss point level. The elastoplastic stiffness matrix in the Euler solution is evaluated using the suction as well as the stresses and hardening parameters at the start of the subincrement, while the elastoplastic matrix in the modified Euler solution is evaluated using the suction at the end of the subincrement. In addition, when applying subincrementation, the same rate is applied to all strain components including the suction. Copyright © 2003 John Wiley & Sons, Ltd. [source] Gelifluction: viscous flow or plastic creep?EARTH SURFACE PROCESSES AND LANDFORMS, Issue 12 2003Charles Harris Abstract This paper reports results from two scaled centrifuge modelling experiments, designed to simulate thaw-related geli,uction. A planar 12° prototype slope was modelled in each experiment, using the same natural ,ne sandy silt soil. However two different scales were used. In Experiment 1, the model scale was 1/10, tested in the centrifuge at 10 gravities (g) and in Experiment 2, the scale was 1/30, tested at 30 g. Centrifuge scaling laws indicate that the time scaling factor for thaw consolidation between model and prototype is N2, where N is the number of gravities under which the model was tested. However, the equivalent time scaling for viscous ,ow is 1/1. If geli,uction is a viscosity-controlled ,ow process, scaling con,icts will therefore arise during centrifuge modelling of thawing slopes, and rates of displacement will not scale accurately to the prototype. If, however, no such scaling con,icts are observed, we may conclude that geli,uction is not controlled by viscosity, but rather by elasto-plastic soil deformation in which frictional shear strength depends on effective stress, itself a function of the thaw consolidation process. Models were saturated, consolidated and frozen from the surface downwards on the laboratory ,oor. The frozen models were then placed in the geotechnical centrifuge and thawed from the surface down. Each model was subjected to four freeze,thaw cycles. Soil temperatures and pore water pressures were monitored, and frost heave, thaw settlement and downslope displacements measured. Pore water pressures, displacement rates and displacement pro,les re,ecting accumulated shear strain, were all similar at the two model scales and volumetric soil transport per freeze,thaw cycle, when scaled to prototype, were virtually identical. Displacement rates and pro,les were also similar to those observed in earlier full-scale laboratory ,oor experiments. It is concluded therefore that the modelled geli,uction was not a time-dependent viscosity-controlled ,ow phenomenon, but rather elasto-plastic in nature. A ,rst approximation ,,ow' law is proposed, based on the ,Cam Clay' constitutive model for soils. Copyright © 2003 John Wiley & Sons, Ltd. [source] Effects of hillslope topography on hydrological responses in a weathered granite mountain, Japan: comparison of the runoff response between the valley-head and the side slopeHYDROLOGICAL PROCESSES, Issue 14 2008Masamitsu Fujimoto Abstract To evaluate the effects of hillslope topography on storm runoff in a weathered granite mountain, discharge rate, soil pore water pressures, and water chemistry were observed on two types of hillslope: a valley-head (a concave hillslope) and a side slope (a planar hillslope). Hydrological responses on the valley-head and side slope reflected their respective topographic characteristics and varied with the rainfall magnitude. During small rainfall events (<35 mm), runoff from the side slope occurred rapidly relative to the valley-head. The valley-head showed little response in storm runoff. As rainfall amounts increased (35,60 mm), the valley-head yielded a higher flow relative to the side slope. For large rainfall events (>60 mm), runoff from both hillslopes increased with rainfall, although that from the valley-head was larger than that from the side slope. The differences in the runoff responses were caused by differences in the roles of lower-slope soils and the convergence of the hillslope. During small rainfall events, the side slope could store little water; in contrast, all rainwater could be stored in the soils at the valley-head hollow. As the amount of rainfall increased, the subsurface saturated area of the valley-head extended from the bottom to the upper portion of the slope, with the contributions of transient groundwater via lateral preferential flowpaths due to the high concentration of subsurface water. Conversely, saturated subsurface flow did not contribute to runoff responses, and the subsurface saturated area at the side slope did not extend to the upper slope for the same storm size. During large rainfall events, expansion of the subsurface saturated area was observed in both hillslopes. Thus, differences in the concentration of subsurface water, reflecting hillslope topography, may create differences in the extension of the subsurface saturated area, as well as variability in runoff responses. Copyright © 2007 John Wiley & Sons, Ltd. [source] A numerical procedure for predicting rainfall-induced movements of active landslides along pre-existing slip surfacesINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 4 2008Michele Calvello Abstract A numerical model to predict landslide movements along pre-existing slip surfaces from rainfall data is presented. The model comprises: a transient seepage finite-element analysis to compute the variations of pore water pressures due to rainfall; a limit equilibrium stability analysis to compute the factors of safety along the slip surface associated with transient pore pressure conditions; an empirical relationship between the factor of safety and the rate of displacement of the slide along the slip surface; an optimization algorithm for the calibration of analyses and relationships based on available monitoring data. The model is validated with reference to a well-monitored active slide in central Italy, characterized by very slow movements occurring within a narrow band of weathered bedrock overlaid by a clayey silt colluvial cover. The model is conveniently divided and presented in two parts: a groundwater model and a kinematic model. In the first part, monthly recorded rainfall data are used as time-dependent flow boundary conditions of the transient seepage analysis, while piezometric levels are used to calibrate the analysis by minimizing the errors between monitoring data and computed pore pressures. In the second part, measured inclinometric movements are used to calibrate the empirical relationship between the rate of displacement along the slip surface and the factor of safety, whose variation with time is computed by a time-dependent stability analysis. Copyright © 2007 John Wiley & Sons, Ltd. [source] A viscoelastic model for the dynamic response of soils to periodical surface water disturbanceINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 12 2006P. C. Hsieh Abstract In many instances soils can be assumed to behave like viscoelastic materials during loading/unloading cycles, and this study is aimed at setting up a viscoelastic model to investigate the dynamic response of a porous soil layer of finite thickness under the effect of periodically linear water waves. The waves and homogeneous water are described by potential theory and the porous material is described by a viscoelastic model, which is modified from Biot's poroelastic theory (1956). The distributions of pore water pressures and effective stresses of various soils such as silt, sand, and gravel are demonstrated by employing the proposed viscoelastic model. The discrepancies of the dynamic response between the simulations of viscoelastic model and elastic model are found to be strongly dependent on the wave frequency. Copyright © 2006 John Wiley & Sons, Ltd. [source] Modelling of earth and water pressure development during diaphragm wall construction in soft clayINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 13 2004R. Schäfer Abstract The influence of a diaphragm wall construction on the stress field in a soft clayey soil is investigated by the use of a three-dimensional FE-model of seven adjacent wall panels. The installation procedure comprises the excavation and the subsequent pouring of each panel taking into account the increasing stiffness of the placed fresh concrete. The soft clay deposit is described by a visco-hypoplastic constitutive model considering the rheological properties and the small-strain stiffness of the soil. The construction process considerably affects the effective earth and pore water pressures adjacent to the wall. Due to concreting, a high excess pore water pressure arises, which dissipates during the following construction steps. The earth pressure finally shows an oscillating, distinct three-dimensional distribution along the retaining wall which depends on the installation sequence of the panels and the difference between the fresh concrete pressure and the total horizontal earth pressure at rest. In comparison to FE-calculations adopting the earth pressure at rest as initial condition, greater wall deflections and surface ground settlements during the subsequent pit excavation can be expected, as the average stress level especially in the upper half of the wall is increased by the construction procedure of the retaining structure. Copyright © 2004 John Wiley & Sons, Ltd. [source] Solifluction processes on permafrost and non-permafrost slopes: results of a large-scale laboratory simulationPERMAFROST AND PERIGLACIAL PROCESSES, Issue 4 2008Charles Harris Abstract We present results of full-scale physical modelling of solifluction in two thermally defined environments: (a) seasonal frost penetration but no permafrost, and (b) a seasonally thawed active layer above cold permafrost. Modelling was undertaken at the Laboratoire M2C, Université de Caen-Basse Normandie, Centre National de la Recherche Scientifique, France. Two geometrically similar slope models were constructed using natural frost-susceptible test soil. In Model 1 water was supplied via a basal sand layer during freezing. In Model 2 the basal sand layer contained refrigerated copper tubing that maintained a permafrost table. Soil freezing was from the top down in Model 1 (one-sided freezing) but from the top down and bottom up (two-sided freezing) in Model 2. Thawing occurred from the top down as a result of positive air temperatures. Ice segregation in Model 1 decreased with depth, but in Model 2, simulated rainfall led to summer frost heave associated with ice segregation at the permafrost table, and subsequent two-sided freezing increased basal ice contents further. Thaw consolidation in Model 1 decreased with depth, but in Model 2 was greatest in the ice-rich basal layer. Soil shear strain occurred during thaw consolidation and was accompanied by raised pore water pressures. Displacement profiles showed decreasing movement rates with depth in Model 1 (one-sided freezing) but ,plug-like' displacements of the active layer over a shearing basal zone in Model 2 (two-sided active layer freezing). Volumetric transport rates were approximately 2.8 times higher for a given rate of surface movement in the permafrost model compared with the non-permafrost model. Copyright © 2008 John Wiley & Sons, Ltd. [source] Solifluction processes in an area of seasonal ground freezing, Dovrefjell, NorwayPERMAFROST AND PERIGLACIAL PROCESSES, Issue 1 2008Charles Harris Abstract Continuous monitoring of soil temperatures, frost heave, thaw consolidation, pore water pressures and downslope soil movements are reported from a turf-banked solifluction lobe at Steinhøi, Dovrefjell, Norway from August 2002 to August 2006. Mean annual air temperatures over the monitored period were slightly below 0°C, but mean annual ground surface temperatures were around 2°C warmer, due to the insulating effects of snow cover. Seasonal frost penetration was highly dependent on snow thickness, and at the monitoring location varied from 30,38,cm over the four years. The shallow annual frost penetration suggests that the site may be close to the limit of active solifluction in this area. Surface solifluction rates over the period 2002,06 ranged from 0.5,cm yr,1 at the rear of the lobe tread to 1.6,cm yr,1 just behind the lobe front, with corresponding soil transport rates of 6,cm3,cm,1 yr,1 and 46,cm3,cm,1 yr,1. Pore water pressure measurements indicated seepage of snowmelt beneath seasonally frozen soil in spring with artesian pressures beneath the confining frozen layer. Soil thawing was associated with surface settlement and downslope soil displacements, but following clearance of the frozen ground, later soil surface settlement was accompanied by retrograde movement. Summer rainfall events caused brief increases in pore pressure, but no further soil movement. Surface displacements exceeded maximum potential frost creep values and it is concluded that gelifluction was an important component of slow near-surface mass movements at this site. Temporal and spatial variations in solifluction rates across the area are likely to be considerable and strongly influenced by snow distribution. Copyright © 2008 John Wiley & Sons, Ltd. [source] |