Pore Water (pore + water)

Distribution by Scientific Domains

Kinds of Pore Water

  • sediment pore water

  • Terms modified by Pore Water

  • pore water pressure
  • pore water velocity

  • Selected Abstracts


    Localization of processes involved in methanogenic degradation of rice straw in anoxic paddy soil

    ENVIRONMENTAL MICROBIOLOGY, Issue 8 2001
    Kristin Glissmann
    In anoxic paddy soil, rice straw is decomposed to CH4 and CO2 by a complex microbial community consisting of hydrolytic, fermenting, syntrophic and methanogenic microorganisms. Here, we investigated which of these microbial groups colonized the rice straw and which were localized in the soil. After incubation of rice straw in anoxic soil slurries for different periods, the straw pieces were removed from the soil, and both slurry and straw were studied separately. Although the potential activities of polysaccharolytic enzymes were higher in the soil slurry than in the straw incubations, the actual release of reducing sugars was higher in the straw incubations. The concentrations of fermentation products, mainly acetate and propionate, increased steadily in the straw incubations, whereas only a little CH4 was formed. In the soil slurries, on the other hand, fermentation products were low, whereas CH4 production was more pronounced. The production of CH4 or of fermentation products in the separated straw and soil incubations accounted in sum for 54,82% of the CH4 formed when straw was not removed from the soil. Syntrophic propionate degradation to acetate, CO2 and H2 was thermodynamically more favourable in the soil than in the straw fraction. These results show that hydrolysis and primary fermentation reactions were mainly localized on the straw pieces, whereas the syntrophic and methanogenic reactions were mainly localized in the soil. The percentage of bacterial relative to total microbial 16S rRNA content was higher on the straw than in the soil, whereas it was the opposite for the archaeal 16S rRNA content. It appears that rice straw is mainly colonized by hydrolytic and fermenting bacteria that release their fermentation products into the soil pore water where they are further degraded to CH4. Hence, complete methanogenic degradation of straw in rice soil seems to involve compartmentalization. [source]


    Influence of soil type and organic matter content on the bioavailability, accumulation, and toxicity of ,-cypermethrin in the springtail Folsomia candida

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2010
    Bjarne Styrishave
    Abstract The influence of organic matter (OM) content on ,-cypermethrin porewater concentrations and springtail Folsomia candida accumulation was investigated in two soils with different levels of organic matter, a forest soil with a total organic carbon (TOC) content of 5.0% (OM,=,11.5%) and an agricultural soil with a TOC content of 1.3% (OM,=,4.0%). Also, the effects of ,-cypermethrin concentrations in soil and pore water and the influence of soil aging on springtail reproduction were investigated. Springtail reproduction was severely affected by increasing ,-cypermethrin in soil with 1.3% TOC; the median effective concentration value (EC50) was estimated to 23.4,mg/kg (dry wt). Reproduction was only marginally affected in the soil with 5.0% TOC, and no EC50 value could be estimated. However, when expressing ,-cypermethrin accumulation as a function of soil ,-cypermethrin concentrations, no difference was found between the two soil types, and no additional ,-cypermethrin uptake was observed at soil concentrations above approximately 200,mg/kg (dry wt). By using solid-phase microextraction (SPME), it could be demonstrated that ,-cypermethrin porewater concentrations were higher in the soil with low organic matter (LOM) content than in the soil with high organic matter (HOM) content. Furthermore, a clear relationship was found between ,-cypermethrin concentrations in springtails and porewater. Soil aging was not found to exert any effect on ,-cypermethrin toxicity toward springtails. The study indicates that the springtail's accumulation of ,-cypermethrin and reproduction is governed by ,-cypermethrin porewater concentrations rather than the total ,-cypermethrin concentration in soil. Environ. Toxicol. Chem. 2010;29:1084,1090. © 2010 SETAC [source]


    Field testing of equilibrium passive samplers to determine freely dissolved native polycyclic aromatic hydrocarbon concentrations

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2008
    Gerard Cornelissen
    Abstract Equilibrium passive samplers are promising tools to determine freely dissolved aqueous concentrations (CW,free) of hydrophobic organic compounds. Their use in the field, however, remains a challenge. In the present study on native polycyclic aromatic hydrocarbons (PAHs) in Oslo Harbor, Norway, two different passive sampler materials, polyoxymethylene (POM; thickness, 55 ,m [POM-55] and 500 ,m [POM-500]) and polydimethylsiloxane (PDMS; thickness, 200 ,m), were used to determine in the laboratory CW,free in sediment pore water (CPW,free), and the suitability of five passive samplers for determination of CW,free in overlying surface water was tested under field conditions. For laboratory determinations of CPW,free, both POM-55 and PDMS turned out to be suitable. In the field, the shortest equilibrium times (approximately one month) were observed for POM-55 and PDMS (thickness, 28 ,m) coatings on solid-phase microextraction fibers, with PDMS tubing as a good alternative. Low-density polyethylene (thickness, 100 ,m) and POM-500 did not reach equilibrium within 119 d in the field. Realistic values were obtained for dissolved organic carbon,water partition coefficients in the field (approximately one log unit under log KOW), which strengthened the conclusion that equilibrium was established in field-exposed passive samplers. At all four stations, chemical activity ratios between pore water and overlying water were greater than one for all PAHs, indicating that the sediment was a PAH diffusion source and that sediment remediation may be an appropriate treatment for PAH contamination in Oslo Harbor. [source]


    Degradation kinetics of ptaquiloside in soil and soil solution

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2008
    Rikke Gleerup Ovesen
    Abstract Ptaquiloside (PTA) is a carcinogenic norsesquiterpene glycoside produced in bracken (Pteridium aquilinum (L.) Kuhn), a widespread, aggressive weed. Transfer of PTA to soil and soil solution eventually may contaminate groundwater and surface water. Degradation rates of PTA were quantified in soil and soil solutions in sandy and clayey soils subjected to high natural PTA loads from bracken stands. Degradation kinetics in moist soil could be fitted with the sum of a fast and a slow first-order reaction; the fast reaction contributed 20 to 50% of the total degradation of PTA. The fast reaction was similar in all horizons, with the rate constant k1F ranging between 0.23 and 1.5/h. The slow degradation, with the rate constant k1S ranging between 0.00067 and 0.029/h, was more than twice as fast in topsoils compared to subsoils, which is attributable to higher microbial activity in topsoils. Experiments with sterile controls confirmed that nonmicrobial degradation processes constituted more than 90% of the fast degradation and 50% of the slow degradation. The lower nonmicrobial degradation rate observed in the clayey compared with the sandy soil is attributed to a stabilizing effect of PTA by clay silicates. Ptaquiloside appeared to be stable in all soil solutions, in which no degradation was observed within a period of 28 d, in strong contrast to previous studies of hydrolysis rates in artificial aqueous electrolytes. The present study predicts that the risk of PTA leaching is controlled mainly by the residence time of pore water in soil, soil microbial activity, and content of organic matter and clay silicates. [source]


    Potential for 4- n -nonylphenol biodegradation in stream sediments

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2008
    Paul M. Bradley
    Abstract The potential for in situ biodegradation of 4-nonylphenol (4-NP) was investigated in three hydrologically distinct streams impacted by wastewater treatment plants (WWTPs) in the United States. Microcosms were prepared with sediments from each site and amended with [U-ring- 14C]4- n -nonylphenol (4- n -NP) as a model test substrate. Microcosms prepared with sediment collected upstream of the WWTP outfalls and incubated under oxic conditions showed rapid and complete mineralization of [U-ring- 14C]4-n-NP to 14CO2 in all three systems. In contrast, no mineralization of [U-ring- 14C]4- n -NP was observed in these sediments under anoxic (methanogenic) conditions. The initial linear rate of [U-ring- 14C]4- n -NP mineralization in sediments from upstream and downstream of the respective WWTP outfalls was inversely correlated with the biochemical oxygen demand (BOD) of the streambed sediments. These results suggest that the net supply of dissolved oxygen to streambed sediments is a key determinant of the rate and extent of 4-NP biodegradation in stream systems. In the stream systems considered by the present study, dissolved oxygen concentrations in the overlying water column (8,10 mg/L) and in the bed sediment pore water (1,3 mg/L at a depth of 10 cm below the sediment,water interface) were consistent with active in situ 4-NP biodegradation. These results suggest WWTP procedures that maximize the delivery of dissolved oxygen while minimizing the release of BOD to stream receptors favor efficient biodegradation of 4-NP contaminants in wastewater-impacted stream environments. [source]


    Bioaccumulation and biotransformation of polycyclic aromatic hydrocarbons during sediment tests with oligochaetes (Lumbriculus variegatus)

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2007
    Merja Lyytikäinen
    Abstract In some kinetic studies with aquatic invertebrates, the bioaccumulation of polyaromatic hydrocarbons (PAHs) has been observed to peak at the beginning of the test. This has been explained by the depletion of PAHs from pore water due to limited desorption during the bioaccumulation test or, alternatively, by the activation of biotransformation mechanisms in the organisms. In the present study, we exposed the aquatic oligochaetes, Lumbriculus variegatus, to creosote oil,contaminated sediments to examine the bioaccumulation of PAHs and to clarify the importance of contaminant depletion and biotransformation for it. The contaminant depletion was studied by replanting test organisms into fresh, nondepleted test sediments at 3-d intervals over 12 d and by comparing the resulting body burdens to those of the organisms that were not replanted. The biotransformation capability of L. variegatus was assessed by following the concentration of 1-hydroxypyrene (1-HP), a phase I metabolite of pyrene, in oligochaete tissue during a 15-d test. We observed that the bioaccumulation of most PAHs indeed peaked at the beginning of the test. The concentrations in the replanted organisms were only 1.5 to 2 times higher than in nonreplanted organisms during the first 9 d of the test and, by day 12, no differences were detected. 1-Hydroxypyrene was detected in oligochaete tissue throughout the exposures, and concentrations decreased over time. However, the proportion of 1-HP to pyrene increased linearly during the test. These results indicated that the depletion of contaminants has only a minor effect on their bioaccumulation in oligochaetes and that the cause for the observed bioaccumulation curve shape is rapid elimination of the contaminants and, possibly to some degree, their metabolites. [source]


    Bioassays with caged Hyalella azteca to determine in situ toxicity downstream of two Saskatchewan, Canada, uranium operations,

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2007
    Erin L. Robertson
    Abstract The main objectives of this in situ study were to evaluate the usefulness of an in situ bioassay to determine if downstream water bodies at the Key Lake and Rabbit Lake uranium operations (Saskatchewan, Canada) were toxic to Hyalella azteca and, if toxicity was observed, to differentiate between the contribution of surface water and sediment contamination to in situ toxicity. These objectives were achieved by performing 4-d in situ bioassays with laboratory-reared H. azteca confined in specially designed, paired, surface water and sediment exposure chambers. Results from the in situ bioassays revealed significant mortality, relative to the respective reference site, at the exposure sites at both Key Lake (p , 0.001) and Rabbit Lake (p = 0.001). No statistical differences were found between survival in surface water and sediment exposure chambers at either Key Lake (p = 0.232) or Rabbit Lake (p = 0.072). This suggests that surface water (the common feature of both types of exposure chambers) was the primary cause of in situ mortality of H. azteca at both operations, although this relationship was stronger at Key Lake. At Key Lake, the primary cause of aquatic toxicity to H. azteca did not appear to be correlated with the variables measured in this study, but most likely with a pulse of organic mill-process chemicals released during the time of the in situ study , a transient event that was caused by a problem with the mill's solvent extraction process. The suspected cause of in situ toxicity to H. azteca at Rabbit Lake was high levels of uranium in surface water, sediment, and pore water. [source]


    Risk of weathered residual Exxon Valdez oil to pink salmon embryos in Prince William Sound

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2007
    Ernest L. Brannon
    Abstract It has been hypothesized that pink salmon eggs incubating in intertidal streams transecting Prince William Sound (PWS) beaches oiled by the Exxon Valdez oil spill were exposed to lethal doses of dissolved hydrocarbons. Since polycyclic aromatic hydrocarbon (PAH) levels in the incubation gravel were too low to cause mortality, the allegation is that dissolved high-molecular-weight hydrocarbons (HPAH) leaching from oil deposits on the beach adjacent to the streams were the source of toxicity. To evaluate this hypothesis, we placed pink salmon eggs in PWS beach sediments containing residual oil from the Exxon Valdez oil spill and in control areas without oil. We quantified the hydrocarbon concentrations in the eggs after three weeks of incubation. Tissue PAH concentrations of eggs in oiled sediments were generally <100 ppb and similar to background levels on nonoiled beaches. Even eggs in direct contact with oil in the sediment resulted in tissue PAH loads well below the lethal threshold concentrations established in laboratory bioassays, and very low concentrations of HPAH compounds were present. These results indicate that petroleum hydrocarbons dissolved from oil deposits on intertidal beaches are not at concentrations that pose toxic risk to incubating pink salmon eggs. The evidence does not support the hypothesis that interstitial pore water in previously oiled beaches is highly toxic. [source]


    Bioaccumulation of native polycyclic aromatic hydrocarbons from sediment by a polychaete and a gastropod: Freely dissolved concentrations and activated carbon amendment

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2006
    Gerard Cornelissen
    Abstract The present paper describes a study on the bioaccumulation of native polycyclic aromatic hydrocarbons (PAHs) from three harbors in Norway using the polychaete Nereis diversicolor and the gastropod Hinia reticulata. First, biota,sediment accumulation factors (BSAFs) were measured in laboratory bioassays using the original sediments. Median BSAFs were 0.004 to 0.01 kg organic carbon/kg lipid (10 PAHs and 6 organism,sediment combinations), which was a factor of 89 to 240 below the theoretical BSAF based on total sediment contents (which is approximately one). However, if BSAFs were calculated on the basis of measured freely dissolved PAH concentrations in the pore water (measured with polyoxymethylene passive samplers), it appeared that these BSAFfree values agreed well with the measured BSAFs, within a factor of 1.7 to 4.3 (median values for 10 PAHs and six organism,sediment combinations). This means that for bioaccumulation, freely dissolved pore-water concentrations appear to be a much better measure than total sediment contents. Second, we tested the effect of 2% (of sediment dry wt) activated carbon (AC) amendments on BSAF. The BSAFs were significantly reduced by a factor of six to seven for N. diversicolor in two sediments (i.e., two of six organism,sediment combinations), whereas no significant reduction was observed for H. reticulata. This implies that either site-specific evaluations of AC amendment are necessary, using several site-relevant benthic organisms, or that the physiology of H. reticulata caused artifactually high BSAF values in the presence of AC. [source]


    Application of toxicity identification evaluation to sediment in a highly contaminated water reservoir in southeastern Brazil

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 2 2006
    Rosalina P. A. Araújo
    Abstract Rasgão Reservoir, located close to the Metropolitan region of São Paulo, Brazil, has been analyzed previously, and its sediment was found to be highly toxic, with high levels of metals and polycyclic aromatic hydrocarbons and a complete absence of benthic life. Polychlorinated biphenyls also were present, as was mutagenic activity, detected with the Salmonella/microsome assay. Because of the extremely complex mixture of contaminants in these sediments, a toxicity identification evaluation was performed on the pore water and elutriate using Ceriodaphnia dubia and Vibrio fischeri. Toxicity characterization, identification, and confirmation procedures were performed in one representative sample of the reservoir, and the results indicated that ammonia was the main cause of the toxicity detected with C. dubia in both sediment pore water and elutriate. Chemical analysis corroborated this observation by revealing un-ionized ammonia concentrations as high as 5.14 mg/L in pore water and 2.06 mg/L in elutriate. These high ammonia levels masked possible toxicity caused by other classes of compounds. The toxicity detected with V. fischeri decreased with the time of sample storage and was related to the organic fraction of the pore water and the elutriate, in which compounds such as benzothiazole and nonylphenol were detected. [source]


    Uptake and accumulation of sediment-associated 4-nonylphenol in a benthic invertebrate (Lumbriculus variegatus, freshwater oligochaete)

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 5 2005
    Valeria Croce
    Abstract In the present work, the oligochaete Lumbriculus variegatus was exposed for 56 d to lake sediment spiked with 4-nonylphenol (4-NP), which is a breakdown product of alkylphenol polyethoxylates, an important class of nonionic surfactants. During the exposure period, the content of 4-NP was determined in the oligochaetes, sediment, overlying water, and pore water in order to monitor the distribution of the 4-NP in the compartments of the test system. Concentration of 4-NP in L. variegatus increased linearly over the course of the test, with an uptake rate coefficient of 1.9 × 10,2 (± 0.2 × 10,2; [g carbon/(g lipid-h)]). No steady state was reached at the end of the exposure period, suggesting that the elimination of 4-NP by the organism was negligible. Ingested sediments played an important role in the accumulation of 4-NP in L. variegatus, which may achieve very high 4-NP body concentrations. The 56-d biota sediment accumulation factor (BSAF) was 24 ± 7 g carbon/g lipid. L. variegatus also was exposed to 4-NP-contaminated field sediment, and field oligochaetes and sediments were collected for 4-NP pollution assessment in aquatic ecosystem. The 4-NP uptake with natural sediment was in accordance with that measured with spiked sediments, suggesting that the bioavailability of sediment-associated 4-NP for L. variegatus was not affected by 4-NP sediment concentration and abiotic sediment characteristics. The BSAFs measured in field oligochaetes, ranging from 39 to 55 g carbon/g lipid, was relatively higher than the bioaccumulation factor measured in laboratory tests. The results suggest that 4-NP concentration can reach high levels in benthic oligochaetes; this can be an important way of exposure for their pelagic predators. [source]


    Ecotoxicologic impacts of agricultural drain water in the Salinas River, California, USA

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 10 2003
    Brian S. Anderson
    Abstract The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California (USA). Large areas of this watershed are cultivated year-round in row crops, and previous laboratory studies have demonstrated that acute toxicity of agricultural drain water to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. We investigated chemical contamination and toxicity in waters and sediments in the river downstream of an agricultural drain water input. Ecological impacts of drain water were investigated by using bioassessments of macroinvertebrate community structure. Toxicity identification evaluations were used to characterize chemicals responsible for toxicity. Salinas River water downstream of the agricultural drain was acutely toxic to the cladoceran Ceriodaphnia dubia, and toxicity to C. dubia was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to the amphipod Hyalella azteca, a resident invertebrate. Toxicity identification evaluations (TIEs) conducted on sediment pore water suggested that toxicity to amphipods was due in part to OP pesticides; concentrations of chlorpyrifos in pore water sometimes exceeded the 10-d mean lethal concentration (LC50) for H. azteca. Potentiation of toxicity with addition of the metabolic inhibitor piperonyl butoxide suggested that sediment toxicity also was due to other non,metabolically activated compounds. Macroinvertebrate community structure was highly impacted downstream of the agricultural drain input, and a number of macroinvertebrate community metrics were negatively correlated with combined TUs of chlorpyrifos and diazinon, as well as turbidity associated with the drain water. Some macroinvertebrate metrics were also correlated with bank vegetation cover. This study suggests that pesticide pollution is the likely cause of ecological damage in the Salinas River, and this factor may interact with other stressors associated with agricultural drain water to impact the macroinvertebrate community in the system. [source]


    Availability of polycyclic aromatic hydrocarbons to earthworms (Eisenia andrei, Oligochaeta) in field-polluted soils and soil-sediment mixtures,

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2003
    Tjalling Jager
    Abstract The bioavailability of polycyclic aromatic hydrocarbons (PAHs) for earthworms (Eisenia andrei) was experimentally determined in seven field-polluted soils and 15 soil-sediment mixtures. The pore-water concentration of most PAHs was higher than predicted. However, most of the compound was associated with dissolved organic carbon (DOC) and not directly available for uptake by earthworms. The apparent sorption could be reasonably predicted on the basis of interactions with DOC; however, the biota-soil accumulation factors (BSAFs) for earthworms were up to two orders of magnitude lower than predicted by equilibrium partitioning. The large variability between sites was not fully explained by differences in sorption. Experimental results indicate that the pool of freely dissolved PAHs in the pore water became partially depleted because of uptake by the earthworms and that bioaccumulation is thus also influenced by the kinetics of PAH desorption and mass transport. A pilot study with Lumbricus rubellus showed that steady-state body residues were well correlated to E. andrei. Current results show that depositing dredge spoil on land may lead to increased bioavailability of the lower-molecular-weight PAHs. However, risk assessment can conservatively rely on equilibrium partitioning, but accurate prediction requires quantification of the kinetics of bioavailability. [source]


    Cadmium uptake by earthworms as related to the availability in the soil and the intestine

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2001
    Leonard A. Oste
    Abstract The free metal concentration in the soil solution is often considered a key parameter for metal uptake by and toxicity to soft-bodied soil organisms. The equilibrium partitioning theory, which assumes a relationship between the contaminant concentration in pore water and the contaminant concentration in the body tissue, can be used to describe uptake by earthworms. This theory has proved useful for organic chemicals, but its applicability is less clear for metals. In this study, the Cd concentration in soil pore water (pw) was varied by increasing the soil pH by the addition of lime (Ca(OH)2) and by adding manganese oxide (MnO2), which has a high metal binding capacity. Both lime (0.135% w/w) and MnO2 (1% w/w) decreased [Cd2+]pw by a factor of 25, while CdWorm was reduced only by a factor of 1.3 in lime-treated soils and 2.5 in MnO2 -treated soils. Cadmium uptake was weakly related to the free metal concentration (R2adj = 0.66). Adding pH as an explanatory variable increased R2adj to 0.89, indicating that Cd uptake from pore water is pH dependent, which might be attributed to competition of protons and Cd at the surface of the earthworm body. However, previous earthworm experiments in reconstituted groundwater showed a conspicuously smaller pH dependency of Cd uptake. The differences in metal uptake between earthworms in lime- and MnO2 -treated soils are therefore more likely to reflect the predominance of pH-independent intestinal uptake of Cd. Equilibrating the soil with a solution of 0.01 M CaCl2 and 0.1 M triethanolamine (buffered at pH 7.2), simulating the conditions prevailing in the worm intestine, yielded free Cd concentrations that were closely (R2adj = 0.83) and linearly related to the Cd concentration in the earthworm tissue. [source]


    Toxicokinetics of polycyclic aromatic hydrocarbons in Eisenia andrei (Oligochaeta) using spiked soil

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2000
    Tjalling Jager
    Abstract The accumulation of four polycyclic aromatic hydrocarbons ([PAHs]; phenanthrene, pyrene, fluoranthene, and ben-zo[a]pyrene) was tested in the earthworm Eisenia andrei in a spiked artificial soil medium. A typical peak in the body residues was observed for all PAHs around day 7, which could not be explained from changes in the total soil concentration. It is argued that the most likely cause of this peak is a decrease in the concentration in pore water, the main bioavailable phase for earthworms. This decrease is caused by biodegradation while the low rate of mass transfer from the solid state precludes replenishment. To describe the data, bioavailability was assumed to decline exponentially in time, but the shape of the accumulation curves suggests a more abrupt change. Estimates of the uptake rate (k1) are similar for all PAHs when expressed on soil solution basis (approximately 2,000 L/kg/d); the elimination rate (k2) shows a decrease with Kow as expected, but the values tend to be slightly lower than literature data. The dynamic bioconcentration factors (k1/k2) agree well with an equilibrium partitioning between soil water and the phases inside the organism. [source]


    Cytotoxicity of settling particulate matter and sediments of the Neckar River (Germany) during a winter flood

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2000
    Henner Hollert
    Abstract To investigate the cytotoxic and genotoxic potentials of settling particulate matter (SPM) carried by the Neckar River, a well-studied model for a lock-regulated river in central Europe, during a flood, acute cytotoxicity was investigated using the fibroblast-like fish cell line RTG-2 with the neutral red retention, the succinic acid dehydrogenase (MTT), and the lactatedehydro-genase (LDH) release assays as well as microscopic inspection as endpoints. Genotoxicity of water, pore water, sediments, and SPM were assessed using the Ames test. Different extraction methods (Soxhlet extraction with solvents of variable polarity as well as a fluid/fluid extraction according to pH) in addition to a supplementation of biotests with S9 fractions from the liver of ,-naphthoflavone/phenobarbital-induced rats allowed a further characterization of the biological damage. Both sediments and SPM extracts caused cytotoxic effects in RTG-2 cells. Cytotoxicity was found to increase significantly with polarity of extracting solvents (NR50 = effective concentration for 50% cell death in the neutral red test: 80 [65], 100 [70], 180 [220], and 225 [270] mg/ml for ethanol, acetone, dichloromethane, and n -hexane extracts, respectively, if measured with [without] S9 supplementation). Following extraction according to pH, cytotoxicity could be attributed mainly to neutral substances (NR50: 80 and 218 mg dry SPM/ml test medium for the neutral and the acid fractions, respectively), whereas the slightly acid and basic fractions already showed little or no cytotoxicity. Samples taken during the period of flood rise showed the highest cytotoxic activities. Cytotoxicity was significantly enhanced by the addition of S9 preparations. In contrast, no genotoxic activity was found in native surface waters, pore waters, and SPM. [source]


    Statistical tests and power analysis for three in-vivo bioassays to determine the quality of marine sediments

    ENVIRONMETRICS, Issue 3 2002
    Nelly van der Hoeven
    Abstract Statistical tests are recommended for three marine sediment in-vivo bioassays. In two bioassays (Corophium volutator and Echinocardium cordatum), the mortality in the sediment is compared with that in a control. An unconditional 2,×,2 test is recommended. For one bioassay (Rotoxkit MTM with Brachionus plicatilis), mortality in a dilution series of pore water is compared with the mortality in a control. The Williams test for trends is recommended. For each of these tests the power to assess an effect has been calculated. The number of replicates recommended in the standardized test protocol only allows large effects to be observed in almost all (95 per cent) of the experiments. Given the control mortality rates estimated from a large set of controls, a power of 95 per cent will only be reached if the mortality rate in the tested sediment is over 30 per cent for C. volutator and almost 60 per cent for E. cordatum. To reach this power for bioassays with B. plicatilis, where five concentrations are compared with a control, the mortality rate in the lowest effect concentration should be about 35 per cent. As an alternative to no effect testing, it is suggested that whether the effect of a treatment remains below some chosen minimal relevant effect (MRE) should be tested. Given an MRE at a fixed mortality rate of 25 per cent and ,,=,0.05, at least 55 individuals are necessary to be reasonably sure (95 per cent) that a mortality of 10 per cent will not be declared toxic incorrectly. The tests for mortality are based on the assumption that the survival probabilities of individuals within a test vessel are independent. We have described a method to test this assumption and applied it to the data on C. volutator. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    The use of peepers to sample pore water in acid sulphate soils

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2008
    P. VanOploo
    Summary Serious environmental impacts of acidic drainage from acid sulphate soils in coastal areas are the result of the interactions between the hydrologic cycle, land use and drainage management, and pore water chemistry. In this study, in situ, diffusion-controlled dialysis profile samplers, or peepers, were used to examine pore water chemistry of acid sulphate soils in a coastal, sugarcane-producing area in Eastern Australia. The peepers sampled pore water at 20-mm intervals over a 1.0-m length, permitting excellent resolution of the sharp transitions in pore water chemistry that occur around a soil profile's iron sulphide oxidation front. Comparison of peeper profiles with soil water profiles extracted from soil samples by centrifuging, illustrated the advantages of peepers over conventional soil water sampling techniques in unconsolidated, sulphidic soils. For conventional sampling, the low permeability, gel-like, unoxidized soil samples had to be frozen then thawed before water could be extracted by centrifuging. Peeper profiles of species not involved in redox reactions agreed well with those from centrifuged soil extracts. Redox sensitive species, however, were in poorer agreement because of the lengthy soil sample preparation and extraction procedures required for extraction by centrifuging. The approximately 6-day equilibration time required for peeper sampling allows them to follow monthly or seasonal changes in pore water chemistry in acid sulphate soils due to variations in climate, and land use and management. [source]


    A Numerical Simulation Model for Shield Tunnelling with Compressed Air Support

    GEOMECHANICS AND TUNNELLING, Issue 3 2008
    Felix Nagel Dipl.-Ing.
    This paper is concerned with a numerical simulation model (ekate) specifically designed for shield tunnelling in fully and partially saturated soils based upon the Finite Element Method (FEM). The model considers all relevant components , the soil, the lining, the tail void grouting, the hydraulic jacks and different types of face support , involved in shield tunnelling. The surrounding soft soil is formulated as a three-phase material, consisting of the soil skeleton, pore water and air. This model allows for the simulation of consolidation processes in partially saturated soils as well as of flow of compressed air often used as temporary face support during repair interventions at the cutting wheel. Despite the complexity connected with the relatively high degree of realism of the simulation model, only little effort is required from the user to establish a realistic 3D model for shield tunnelling. To this end an automatic model generator has been developed which allows for a user friendly generation of the discretized model including all components involved and to investigate variants with a minimum effort for the user. The model allows for realistic predictions of settlements and also provides information on deformations and stresses in the ground, the lining and the TBM, respectively. In addition to its use as a prognosis tool in the design process, in particular for tunnelling projects in sensitive urban areas, the model also may be used to assist the driving and steering process in mechanized tunnelling. The paper provides an overview over the main components of the model, the automatic model generator and the tri-phasic representation of the soil. A simulation of a compressed air intervention of a shield tunnel in soft soil demonstrates the applicability of the model. Ein numerisches Simulationsmodell für druckluftgestützte Schildvortriebe In diesem Beitrag wird ein Simulationsmodell basierend auf der Methode der Finiten Elemente (FEM) für die Berechnung schildvorgetriebener Tunnel in un-, voll- und teilgesättigten Böden vorgestellt. In diesem numerischen Modell werden alle beim maschinellen Tunnelbau wesentlichen Komponenten , der Boden, der Ausbau, die Schildschwanzverpressung, die Vortriebspressen sowie unterschiedliche Arten der Ortsbruststützung , wirklichkeitsnah berücksichtigt. Der Baugrund wird im Simulationsmodell als dreiphasiges Material modelliert, bestehend aus dem Korngerüst, dem Porenwasser und der Porenluft. Diese Materialformulierung für den Baugrund ermöglicht die Analyse von Konsolidierungsprozessen in teilgesättigten Böden ebenso wie von Strömungsvorgängen im Boden bei Verwendung von Druckluft als temporärer Ortsbruststützung. Druckluft wird häufig beim Wechsel von Schneidwerkzeugen eingesetzt. Ungeachtet der Komplexität des Modells, die mit der relativ wirklichkeitsnahen Abbildung des Vortriebsgeschehens verbunden ist, ist nur ein sehr geringer Aufwand für die Modellgenerierung erforderlich. Um diesen Eingabeaufwand auf ein Minimum zu reduzieren, wurde ein automatischer Modellgenerator entwickelt, der den Ingenieur bei der Eingabe unterstützt und die Untersuchung von Planungsalternativen deutlich vereinfacht. Das Modell ermöglicht wirklichkeitsnahe Prognosen von Bodenbewegungen und Beanspruchungen, wie sie für die Planung von Vortrieben insbesondere unter setzungsempfindlichen, innerstädtischen Gebieten erforderlich sind. Darüber hinaus stellt das Modell ein wertvolles Hilfsmittel bei der vortriebsbegleitenden Steuerung von Vortriebsmaschinen in Lockergestein dar. Neben den wesentlichen Komponenten des numerischen Modells, des Modellgenerators und der Dreiphasen-Formulierung für den Boden enthält der Beitrag als prototypisches Anwendungsbeispiel die Simulation einer Druckluftintervention in Lockergestein. [source]


    Long-term ozone effects on vegetation, microbial community and methane dynamics of boreal peatland microcosms in open-field conditions

    GLOBAL CHANGE BIOLOGY, Issue 8 2008
    SAMI K. MÖRSKY
    Abstract To study the effects of elevated ozone concentration on methane dynamics and a sedge species, Eriophorum vaginatum, we exposed peatland microcosms, isolated by coring from an oligotrophic pine fen, to double ambient ozone concentration in an open-air ozone exposure field for four growing seasons. The field consists of eight circular plots of which four were fumigated with elevated ozone concentration and four were ambient controls. At the latter part of the first growing season (week 33, 2003), the methane emission was 159±14 mg CH4 m,2 day,1 (mean±SE) in the ozone treatment and 214±8 mg CH4 m,2 day,1 under the ambient control. However, towards the end of the experiment the ozone treatment slightly, but consistently, enhanced the methane emission. At the end of the third growing season (2005), microbial biomass (estimated by phospholipid fatty acid biomarkers) was higher in peat exposed to ozone (1975±108 nmol g,1 dw) than in peat of the control microcosms (1589±115 nmol g,1 dw). The concentrations of organic acids in peat pore water showed a similar trend. Elevated ozone did not affect the shoot length or the structure of the sedge E. vaginatum leaves but it slightly increased the total number of sedge leaves towards the end of the experiment. Our results indicate that elevated ozone concentration enhances the general growth conditions of microbes in peat by increasing their substrate availability. However, the methane production did not reflect the increase in the concentration of organic acids, probably because hydrogenotrophic methane production dominated in the peat studied. Although, we used isolated peatland microcosms with limited size as study material, we did not find experimental factors that could have hampered the basic conclusions on the effects of ozone. [source]


    Quantifying the impact of groundwater discharge on the surface,subsurface exchange

    HYDROLOGICAL PROCESSES, Issue 15 2009
    Fulvio Boano
    Abstract The exchange of oxygen and nutrients between the well-aerated stream water and the subsurface water is crucial for the biochemical conditions of the hyporheic zone. The metabolic activity of the hyporheic microorganisms controls the fate of nitrogen and phosphorus in the pore water, and influences the fate of these nutrients at the catchment scale. Unfortunately, the incomplete knowledge of the complex hydrodynamics of the coupled surface-subsurface flow field often hinders the understanding of the ecological relevance of the hyporheic processes. Here, we analyse the influence of groundwater discharge through the streambed on bedform-induced hyporheic exchange. A simple mathematical model of a coupled stream-aquifer system is developed in order to describe the essential feature of the surface-subsurface exchange. The most representative characteristics of the hyporheic exchange, e.g. the depth of the hyporheic zone - are parametrized in terms of a small number of easily measurable quantities. This information on the hyporheic flow field provides the fundamental basis for the study of the ecological function of the hyporheic zone. Copyright © 2009 John Wiley & Sons, Ltd. [source]


    Infiltration and solute transport under a seasonal wetland: bromide tracer experiments in Saskatoon, Canada

    HYDROLOGICAL PROCESSES, Issue 11 2004
    David F. Parsons
    Abstract In the northern glaciated plain of North America, the duration of surface water in seasonal wetlands is strongly influenced by the rate of infiltration and evaporation. Infiltration also plays important roles in nutrient exchange at the sediment,water interface and groundwater recharge under wetlands. A whole-wetland bromide tracer experiment was conducted in Saskatchewan, Canada to evaluate infiltration and solute transport processes. Bromide concentrations of surface water, groundwater, sediment pore water and plant tissues were monitored as the pond water-level gradually dropped until there was no surface water. Hydraulic head gradients showed strong lateral flow from under the wetland to the treed riparian zone during the growing season. The bromide mass balance analysis showed that in early spring, almost 50% of water loss from the wetland was by infiltration, and it increased to about 70% in summer as plants in and around the wetland started to transpire more actively. The infiltration contributed to recharging the shallow, local groundwater under the wetland, but much of it was taken up by trees without recharging the deeper groundwater system. Emergent plants growing in the wetlands incorporated some bromide, but overall uptake of bromide by vegetation was less than 10% of the amount initially released. After one summer, most of the subsurface bromide was found within 40,80 cm of the soil surface. However, some bromide penetrated as deep as 2,3 m, presumably owing to preferential flow pathways provided by root holes or fractures. Copyright © 2004 Crown in the Right of Canada. Published by John Wiley & Sons, Ltd. [source]


    Some numerical issues using element-free Galerkin mesh-less method for coupled hydro-mechanical problems

    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 7 2009
    Mohammad Norouz Oliaei
    Abstract A new formulation of the element-free Galerkin (EFG) method is developed for solving coupled hydro-mechanical problems. The numerical approach is based on solving the two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Spatial variables in the weak form, i.e. displacement increment and pore water pressure increment, are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on a penalty method. Numerical stability of the developed formulation is examined in order to achieve appropriate accuracy of the EFG solution for coupled hydro-mechanical problems. Examples are studied and compared with closed-form or finite element method solutions to demonstrate the validity of the developed model and its capabilities. The results indicate that the EFG method is capable of handling coupled problems in saturated porous media and can predict well both the soil deformation and variation of pore water pressure over time. Some guidelines are proposed to guarantee the accuracy of the EFG solution for coupled hydro-mechanical problems. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Theoretical investigation of the cavity expansion problem based on a hypoplasticity model

    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 5 2001
    V. A. Osinov
    Abstract The problem of the symmetric quasi-static large-strain expansion of a cavity in an infinite granular body is studied. The body is assumed to be dry or fully drained so that the presence of the pore water can be disregarded. Both spherical and cylindrical cavities are considered. Numerical solutions to the boundary value problem are obtained with the use of the hypoplastic constitutive relation calibrated for a series of granular soils. As the radius of the cavity increases, the stresses and the density on the cavity surface asymptotically approach limit values corresponding to a so-called critical state. For a given soil, the limit values depend on the initial stresses and the initial density. A comparison is made between the solutions for different initial states and different soils. Applications to geotechnical problems such as cone penetration test and pressuremeter test are discussed. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    The Choice of Standardisation Reveals a Significant Influence on the Dynamics of Bacterial Abundance in Newly Deposited River Sediments

    INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 3-4 2003
    Andreas H. Farnleitner
    Abstract After a high water event of the River Danube in April 1994, bacterial cell numbers were determined in newly formed deposits in a backwater near Hainburg (Lower Austria) within a time course of 140 days. This data set shows that expressing bacterial numbers per fresh sediment volume, per sediment dry mass, or per pore-water fluid volume, respectively, yield significantly different results and ecological conlusions. These findings refer particularly to intra-study and time-course comparisons as presented in our case. Bacterial cell numbers expressed per gram sediment dry mass revealed statistically significant differences between the beginning and the end of the study, whereas expressed per cm3 of fresh sediment or fluid volume of sediment pore water, no statistical difference could be detected. It is argued that these differences were caused by physical sediment compaction and mineralisation processes over the considered time-course. Such mechanisms may simulate biological activity if some basic sediment parameters are neglected and thus standardisation has to be done with caution for the particular situation being observed. [source]


    The Trophic Index of Macrophytes (TIM) , a New Tool for Indicating the Trophic State of Running Waters

    INTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 1 2003
    Susanne Schneider
    Abstract In running waters, apart from structural degradation, nutrient input becomes increasingly important. To investigate the indicator values of as many species of submerged macrophytes as possible numerous samples of the sediment within macrophyte stands and the overlying water were taken in running waters throughout Bavaria, Germany. To develop the Trophic Index of Macrophytes (TIM), the concentrations of soluble reactive phosphorus of both the water body and the sediment pore water were used. Based on a weighted sum of the SRP-concentrations of the water body and the sediment pore water, indicator values were determined for a total of 49 species of submerged macrophytes. A detailed method is described on how and depending on which preconditions the trophic state of running waters can be determined by the TIM. An example of the TIM in the stream Rotbach is given. It shows that the TIM is a useful means to detect differences in the phosphorus loading of running waters. [source]


    Sandstone diagenesis of the Lower Cretaceous Sindong Group, Gyeongsang Basin, southeastern Korea: Implications for compositional and paleoenvironmental controls

    ISLAND ARC, Issue 1 2008
    Yong Il Lee
    Abstract The Gyeongsang Basin is a non-marine sedimentary basin formed by extensional tectonism during the Early Cretaceous in the southeastern Korean Peninsula. The sediment fill starts with the Sindong Group distributed along the western margin of the basin. It consists of three lithostratigraphic units: the Nakdong (alluvial fan), Hasandong (fluvial) and Jinju (lacustrine) formations with decreasing age. Sindong Group sandstones are classified into four petrofacies (PF) based on their detrital composition: PF-A consists of the lower Nakdong Formation with average Q73F12R15; PF-B the upper Nakdong and lower Hasandong formations with Q66F15R18; PF-C the middle Hasandong to middle Jinju formations with Q49F29R22; and PF-D the upper Jinju Formation with Q26F34R41. The variations of detrital composition influenced the diagenetic mineral assemblage in the Sindong Group sandstones. Illite and dolomite/ankerite are important diagenetic minerals in PF-A and PF-B, whereas calcite and chlorite are dominant diagenetic minerals in PF-C and PF-D. Most of the diagenetic minerals can be divided into early and late diagenetic stages of formation. Early diagenetic calcites occur mostly in PF-C, probably controlled by arid to semiarid climatic conditions during the sandstone deposition, no early calcite being found in PF-A and PF-B. Late-stage calcites are present in all Sindong Group sandstones. The calcium ions may have been derived from shale diagenesis and dissolution of early stage calcites in the Hasandong and Jinju sandstones. Illite, the only diagenetic clay mineral in PF-A and lower PF-B, is inferred to be a product of kaolinite transformation during deep burial, and the former presence of kaolinite is inferred from the humid paleoclimatic conditions during the deposition of the Nakdong Formation. Chlorites in PF-C and PF-D are interpreted to be the products of transformation of smectitic clay or of precipitation from alkaline pore water under arid to semiarid climatic conditions. The occurrence of late-stage diagenetic minerals largely depended on the distribution of early diagenetic minerals, which was controlled initially by the sediment composition and paleoclimate. [source]


    Formation of Ceramics from Metakaolin-Based Geopolymers: Part I,Cs-Based Geopolymer

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 1 2009
    Jonathan L. Bell
    The structural evolution and crystallization of a cesium-based geopolymer (Cs2O·Al2O3·4SiO2·11H2O) on heating was studied by a variety of techniques including X-ray diffraction, thermal analysis, dilatometry, pycnometry, specific surface area, and microstructural investigation. The Cs geopolymer gradually crystallized into pollucite (Cs2O·Al2O3·4SiO2) on heating above 900°C. Its low crystallization temperature is believed to be due to the presence of nuclei in the geopolymer precursor, which are formed after curing at 50°C for 24 h. The Cs-based geopolymer was found to be more refractory compared with K- and Na-based geopolymers. Significant shrinkage, due primarily to viscous sintering, did not occur until the samples were heated to above 1200°C. The microstructure of unheated geopolymer had ,20,30 nm-sized precipitates that coarsened on heating above 1000°C. By 1350°C, the geopolymer surface had a smooth, glassy texture, although large macropores and closed pores remained. After heating to 1600°C, the closed pores were removed, and the geopolymer reached ,98% of the theoretical density of pollucite. Higher than expected levels of Cs were found near large voids, as seen by scanning electron microscopy and transmission electron microscopy analysis. The presence of this extra Cs was due to Cs left behind in pore water, which was not bound within the geopolymer structure. [source]


    Groundwater input affecting plant distribution by controlling ammonium and iron availability

    JOURNAL OF VEGETATION SCIENCE, Issue 4 2006
    Esther C.H.E.T. Lucassen
    Abstract Question: How does groundwater input affect plant distribution in Alnus glutinosa (black alder) carrs? Location: Alder carrs along the river Meuse, SE Netherlands. Methods: Three types of site, characterized by groundwater flow, were sampled in 17 A. glutinosa carrs. Vegetation and abiotic data (soil and water chemistry) were collected and analysed using a Canonical Correspondence Analysis. Based on the results, a laboratory experiment tested the effect of groundwater input (Ca2+) on pore water chemistry (NH4+ availability). Results: Environmental factors indicating groundwater input (Ca2+ and Fe2+), correlating with the NH+4 concentration in the pore water, best explained the variation in plant distribution. NH4+ availability was determined by Ca2+ input via the groundwater and subsequent competition for exchange sites in the sediment. As a result, nutrient-poor seepage locations fully fed by groundwater were dominated by small iron resistant plants such as Caltha palustris and Equisetum fluviatile. More nutrient-rich locations, fed by a combination of groundwater and surface water, allowed the growth of taller iron resistant plant species such as Carex paniculata. Nutrient-rich locations with stagnating surface water were hardly fed by groundwater, allowing the occurrence of fast growing and less iron tolerant wetland grasses such as Glyceria fluitans and G. maxima. Conclusion: Groundwater input affects plant composition in A. glutinosa carrs along the river Meuse by determining nutrient availability (ammonium) and concentrations of toxic iron. [source]


    Are nutrient availability and acidity-alkalinity gradients related in Sphagnum-dominated peatlands?

    JOURNAL OF VEGETATION SCIENCE, Issue 4 2002
    L. Bragazza
    Pignatti (1982) for vascular plants; Frahm & Frey (1987) for bryophytes Abstract. Gradients in acidity-alkalinity and nutrient availability were studied in 2 Sphagnum -dominated peatlands on the southeastern Italian Alps. Decreasing concentrations of most mineral elements (Ca2+, Mg2+, Mn2+, Al3+ and Si4+) in pore water indicated a progressively lower influx of mineral-soil water from the slightly minerotrophic conditions in the peatland margins to ombrogenous conditions in the central part of the peatlands. This was paralleled by decreasing concentrations of ash, bulk density, Ca, Fe and, partly, Mn in the peat. The nutrient gradient, as defined by pore water concentrations of N and P, was largely independent of the acidity- alkalinity gradient: NO3- and PO43- had similar concentrations throughout the gradient, whereas NH4+ concentrations increased with increasing pore-water pH. In contrast, the peat nutrient gradient coincided with the acidity-alkalinity gradient, with total concentrations of N and P decreasing from the margin to the centre. Bryophytes and vascular plants had different responses along the acidity-alkalinity gradient and the nutrient gradient. Bryophyte distribution reflected the acidity-alkalinity gradient both in pore water and in peat. Vascular plant distribution was mainly influenced by variations in nutrient availability. [source]