Home About us Contact | |||
Pore System (pore + system)
Selected AbstractsSpheres of Microporous Titanosilicate Umbite with Hierarchical Pore Systems,ADVANCED FUNCTIONAL MATERIALS, Issue 8 2008Víctor Sebastián Abstract Micrometric polycrystalline spheres of up to 1,mm diameter of microporous titanosilicate K2TiSi3O9·H2O with umbite structure have been prepared without the use of organic structuring agents. These spheres are organized as micro/macroporous hierarchical materials with macropores in the 0.2,1.4,µm range of average size, showing that intraparticular resistance to water transport is not limiting. Also, similar ion exchange performance can be observed in the Ti-umbite spheres and in the single crystals obtained under the same synthesis conditions. [source] High-Zirconium-Content Nano-Sized Bimodal Mesoporous SilicasEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 13 2006David Ortiz de Zárate Abstract Silica-based nanoparticulated bimodal mesoporous materials with high Zr content (43 , Si/Zr , 4) have been synthesized by a one-pot surfactant-assisted procedure from a hydroalcoholic medium using a cationic surfactant (CTMABr = cetyltrimethylammonium bromide) as structure-directing agent, and starting from molecular atrane complexes of Zr and Si as hydrolytic inorganic precursors. This preparative technique allows optimization of the dispersion of the Zr guest species in the silica walls. The bimodal mesoporous nature of the final high surface area nano-sized materials is confirmed by XRD, TEM, and N2 adsorption,desorption isotherms. The small intraparticle mesopore system (with pore sizes around 2,3 nm) is due to the supramolecular templating effect of the surfactant, while the large mesopores (around 12,24 nm) have their origin in the packing voids generated by aggregation of the primary nanometric mesoporous particles. The basicity of the reaction medium seems to be a key parameter in the definition of this last pore system. The effects induced by the progressive incorporation of Zr atoms on the mesostructure have been examined, and the local environment of the Zr sites in the framework has been investigated by UV/Vis spectroscopy. Observations based on the consequences of post-treatments of the as-synthesized materials with HCl/ethanol mixtures corroborate that the atrane method leads to Zr-rich materials showing enhanced site accessibility and high chemical homogeneity throughout the pore walls. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source] Designed Multifunctional Nanocomposites for Biomedical ApplicationsADVANCED FUNCTIONAL MATERIALS, Issue 10 2010Humphrey H. P. Yiu Abstract The assembly of multifunctional nanocomposite materials is demonstrated by exploiting the molecular sieving property of SBA-16 nanoporous silica and using it as a template material. The cages of the pore networks are used to host iron oxide magnetic nanoparticles, leaving a pore volume of 0.29,cm3,g,1 accessible for drug storage. This iron oxide,silica nanocomposite is then functionalized with amine groups. Finally the outside of the particle is decorated with antibodies. Since the size of many protein molecules, including that of antibodies, is too large to enter the pore system of SBA-16, the amine groups inside the pores are preserved for drug binding. This is proven using a fluorescent protein, fluorescein-isothiocyanate-labeled bovine serum albumin (FITC-BSA), with the unreacted amine groups inside the pores dyed with rhodamine B isothiocyanate (RITC). The resulting nanocomposite material offers a dual-targeting drug delivery mechanism, i.e., magnetic and antibody-targeting, while the functionalization approach is extendable to other applications, e.g., fluorescence,magnetic dual-imaging diagnosis. [source] Organic Ligands Made Porous: Magnetic and Catalytic Properties of Transition Metals Coordinated to the Surfaces of Mesoporous OrganosilicaADVANCED FUNCTIONAL MATERIALS, Issue 7 2010Andreas Kuschel Abstract Inorganic solids with porosity on the mesoscale possess a high internal surface area and a well-accessible pore system. Therefore, it is a relevant task to equip the surfaces of such materials with a maximum density of various organic functional groups. Among these functions it is the capability of coordinating to metal species as a ligand that is of extraordinary importance in many areas, for example, in catalysis. This paper describes how prominent ligands containing donor functions such as carboxylic, thio, chelating, or amine groups can be obtained in the form of nanoporous organosilica materials. The coordination of metal centers such as CoII, MnII, VIV, or PtIV is studied in detail. The magnetic properties of the corresponding materials and some applications in catalysis are reported. A quantitative determination of the surface density of donor atoms by distance measurements using EPR spectroscopy is shown. [source] Gas breakthrough experiments on fine-grained sedimentary rocksGEOFLUIDS (ELECTRONIC), Issue 1 2002A. Hildenbrand Abstract The capillary sealing efficiency of fine-grained sedimentary rocks has been investigated by gas breakthrough experiments on fully water saturated claystones and siltstones (Boom Clay from Belgium, Opalinus Clay from Switzerland and Tertiary mudstone from offshore Norway) of different lithological compositions. Sand contents of the samples were consistently below 12%, major clay minerals were illite and smectite. Porosities determined by mercury injection lay between 10 and 30% while specific surface areas determined by nitrogen adsorption (BET method) ranged from 20 to 48 m2 g , 1. Total organic carbon contents were below 2%. Prior to the gas breakthrough experiments the absolute (single phase) permeability (kabs) of the samples was determined by steady state flow tests with water or NaCl brine. The kabs values ranged between 3 and 550 nDarcy (3 × 10,21 and 5.5 × 10,19 m2). The maximum effective permeability to the gas-phase (keff) measured after gas breakthrough on initially water-saturated samples extended from 0.01 nDarcy (1 × 10,23 m2) up to 1100 nDarcy (1.1 × 10,18 m2). The residual differential pressures after re-imbibition of the water phase, referred to as the ,minimum capillary displacement pressures' (Pd), ranged from 0.06 to 6.7 MPa. During the re-imbibition process the effective permeability to the gas phase decreases with decreasing differential pressure. The recorded permeability/pressure data were used to derive the pore size distribution (mostly between 8 and 60 nm) and the transport porosity of the conducting pore system (10 -5,10 -2%). Correlations could be established between (i) absolute permeability coefficients and the maximum effective permeability coefficients and (ii) effective or absolute permeability coefficients and capillary sealing efficiency. No correlation was found between the capillary displacement pressures determined from gas breakthrough experiments and those derived theoretically by mercury injection. [source] Endothelial barriers: from hypothetical pores to membrane proteins*JOURNAL OF ANATOMY, Issue 6 2002J. A. Firth Abstract The anatomical counterpart of the physiologically defined small pore system of capillary endothelia has proved difficult to establish. In non-brain continuous capillaries, the contributions of caveolar and transmembrane pathways are likely to be small and paracellular clefts are probably the dominant routes. Analogy with epithelial paracellular pathways suggests that tight junctions may be the most restrictive elements. However, structural features of tight junction-based models are incompatible with physiological data; it is more likely that the tight junction acts as a shutter limiting the available cleft area. Proposed molecular sieves elsewhere in the paracellular pathway include the glycocalyx and the cadherin-based complexes of the adherens junctions. The molecular architecture of tight junctions and adherens junctions is moderately well defined in terms of molecular species, and there are differences at both sites between the endothelial and epithelial spectra of protein expression. However, definition of the size-restricting pore remains elusive and may require structural biology approaches to the spatial arrangements and interactions of the membrane molecular complexes surrounding the endothelial paracellular clefts. [source] Effects of decreasing soil water content on seminal lateral roots of young maize plantsJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 6 2006Abstract Soil micropores that contain water at or below field capacity cannot be invaded by seminal or first-order lateral roots of maize plants because their root diameters are larger than 10 ,m. Hence, at soil-water levels below field capacity plant roots must establish a new pore system by displacement of soil particles in order to access soil water. We investigated how decreasing soil water content (SWC) influences growth and morphology of the root system of young maize plants. Plants were grown in rhizotrons 40,cm wide, 50,cm high, and approximately 0.7,cm thick. Five SWC treatments were established by addition of increasing amounts of water to soil and thorough mixing before filling the rhizotrons. No water was added to treatments 1,4 throughout the experiment. Treatment 5 was watered frequently throughout the experiment to serve as a control. Seminal-root length and SWC in soil layers 0,10, 10,20, 20,30, 30,40, and 40,50,cm were measured at intervals of 2,3 d on scanner images by image analysis. At 15 d after planting, for treatments 1,4 shoot dry weight and total root length were directly related to the amount of water added to the soil, and for treatments 4 and 5, total root length and shoot dry weights were similar. Length of seminal roots visible at the transparent surface of the rhizotron for all treatments was highest in the uppermost soil layer and decreased with distance from the soil surface. For all layers, seminal-root elongation rate was at maximum above a SWC of 0.17,cm3,cm,3, corresponding to a matric potential of ,30 kPa. With decreasing SWC, elongation rate decreased, and 20% of maximum seminal root elongation rate was observed below SWC of 0.05,cm3,cm,3. After destructive harvest for treatment 1,4, number of (root-) tips per unit length of seminal root was found uninfluenced over the range of initial SWC from 0.10 to 0.26,cm3,cm,3. However, initial SWC close to the permanent wilting point strongly increased number of tips. Average root length of first-order lateral (FOL) roots increased as initial SWC increased, and the highest length was found for the frequently watered treatment 5. The results of the study suggest that the ability to produce new FOL roots across a wide range of SWC may give maize an adaptive advantage, because FOL root growth can rapidly adapt to changing soil moisture conditions. [source] Transformation Mechanism of the Dehydration of DiasporeJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 4 2003Lars Löffler The dehydration of diaspore to corundum was investigated by means of X-ray powder diffraction at reaction temperatures (400° and 600°C) as well as by transmission electron microscopy (TEM). The TEM studies were performed at the reaction interface of partially dehydrated natural diaspore crystals. The corundum produced consisted of thin dense regions which were separated by nanometer-sized pores forming lamellae with a periodicity of 3.7 nm. At the reaction front a transition phase (D,) could be detected in electron diffraction patterns. The phase D, is isotypic to diaspore, but with a larger spacing of the close-packed (100) oxygen planes (aD, from 0.475 to 0.480 nm). The expansion with respect to diaspore is explained by breaking of the hydrogen bonds of diaspore, considered to be the initial step of the transformation. The spacing of the lamellar pore system in corundum is explained by the misfit of the (100) planes of D, and the (0003) planes of corundum. We conclude that at well-fitting regions of the closed-packed planes at the D,/C interface, dense corundum is formed, while at misfitting regions, the formation of corundum is not favored and the pores are produced. Hence, the transformation of the solid phases takes place as a two-step process, i.e., D , D,, C. [source] Effect of Heat Treatment on the Pore Structure and Drying Shrinkage Behavior of Hydrated Cement PasteJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 9 2002Jeffrey J. Thomas The effect of a short heat treatment on hydrated cement paste has been investigated by measuring the weight and length changes of specimens as they undergo various combinations of heating, drying, and resaturation. Heating a cement paste to 60°C coarsens the capillary pore system, decreases the volume of mesopores, and increases the degree of polymerization of the silicates. In addition, the saturated weight of the paste is permanently decreased by a heat treatment. This weight loss can be explained by conversion of bound hydroxyl groups into liquid water during polymerization of the C-S-H gel phase. These experiments help reconcile and interpret published results describing the properties of cement cured at various temperatures, the effects of a short heat treatment on cement paste, and the thermal expansion behavior of saturated and dry cement paste. [source] Beton unter hohen Temperaturen , eine Frage der TunnelsicherheitBETON- UND STAHLBETONBAU, Issue 2 2006Konrad Bergmeister Prof. Dipl.-Ing. Die Sicherheit in den Tunnels wird einerseits durch das Verhalten der Benützer und andererseits durch die Konstruktion und Ausstattung bestimmt. Neben der Modellierung des Verhaltens und der Anwendung von Sicherheitstheorien in Tunnel gilt es, organisatorische und erzieherische Maßnahmen in der Planungs-, Ausführungs- und Betriebsphase zu setzen. Durch die extreme Hitzeentwicklung können die Einbauten und das Tunneltragwerk beschädigt werden. Dabei kann es zu Betonabplatzungen (spalling) und zum Ablösen von Betonstücken bzw. Verankerungen kommen. In diesem Beitrag werden unterschiedliche Spritzbetone -experimentell unter hohen Temperaturen untersucht. Dabei zeigt sich, daß die Dichte und die Porenverteilung sowie die Zugkapazität der Betonformulierung von ausschlaggebender Bedeutung sind. Concrete exposed to high Temperatures , a safety Issue of tunnels The safety of tunnels is related to the behaviour of the users as well as to the construction and the equipment, which may be damaged due to heat impact. Concrete spalling decreases the effects of corrosion protection and the bonding of the reinforcement, and the load capacity is also diminished. Predictions about possible concrete spalling and failure mechanism often are based on experimental research. The crucial parameters for concrete spalling are the gas pressure in the pores, the physical properties e. g. water absorption at 20 °C and after 1000 °C and the mechanical resistance. In a full scale fire test in a highway tunnel there have been investigated various shotcrete mixtures. Pore size and distribution have been determined with the Mercury Intrusion (MIP) Porosimeter, whereas the permeability was calculated using the results of the MIP at different temperatures. It could be shown, that the moisture in the pore system and the physical and chemical adsorpted water in the matrix as well as in the aggregates evaporates under external increase of temperature and thus leading to higher pressure. Fire resistant shotcrete for use in tunnel shells should exhibit a certain volume of open pores in order to equalize the vapour pressure. [source] |