Home About us Contact | |||
Pore Formation (pore + formation)
Selected AbstractsCompression-Inhibited Pore Formation of Polyelectrolyte Multilayers Containing Weak Polyanions: A Scanning Force Microscopy StudyCHEMPHYSCHEM, Issue 3 2006Bo Wang Abstract Morphological changes of poly(acrylic acid)/poly(diallyldimethylammonium chloride) multilayers induced by low pH were investigated by scanning force microscopy. The weakened interaction between the charged polymer chains in the protonation process is believed to be the reason for this variation. Kinetic studies have shown that during protonation phase separation and dissociation of the multilayers took place successively. The compression of the multilayers, however, caused a transition of the multilayers from a rubbery state to a glassy state. As a result, the closely compacted multilayers lost their sensitivity to pH change. An increase of electrostatic and hydrophobic interactions, can decrease the free energy of the multilayers, and stabilize the films. By compression of the multilayers with a rubber stamp having geometric patterns, films with spatially localized pores were produced. [source] Growth and Phase Transformation of Nanometer-Sized Titanium Oxide Powders Produced by the Precipitation MethodJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 3 2004Gwan Hyoung Lee We report an in situ TEM investigation of the growth and transformation in nanometer-sized titania powders. The powders were produced through precipitation of titanium tetrachloride under different pH conditions. The initial phase of the produced powders was amorphous or was a mixture of anatase and brookite according to the pH conditions. During calcination, the anatase particles grew and transformed into rutile. The transformation temperature increased with increasing pH value. In situ TEM observations showed that the anatase particles were absorbed into rutile, and then rutile particles grew by coalescence. Furthermore, small pores were observed to form in samples prepared with high pH from the effects of hydroxyl ions and zeta potential. Pore formation increased the surface area, which delayed the transformation and nucleation of rutile. This explains the difference of growth and transformation of titania powders produced under different pH conditions during calcination. [source] An alternative method for delivering exogenous material into developing zebrafish embryosBIOTECHNOLOGY & BIOENGINEERING, Issue 6 2007Vikram Kohli Abstract Non-invasive manipulation of multicellular systems is important for medical and biological research. The ability to introduce, remove, or modify molecules in the intracellular environment is pivotal to our understanding of cellular structure and function. Herein, we report on an alternative method for introducing foreign material into developing embryos using the application of femtosecond (fs) laser pulses. When intense fs laser pulses are focused to a sub-micron spot, transient pores are formed, providing a transport pathway for the delivery of exogenous material into embryonic cells. In this study, zebrafish embryos were used as a model system to demonstrate the non-invasiveness of this applied delivery tool. Utilizing optically induced transient pores chorionated and dechorionated zebrafish embryos were successfully loaded with a fluorescent reporter molecule (fluorescein isothiocyanate), Streptavidin-conjugated quantum dots or DNA (Simian-CMV-EGFP). Pore formation was independent of the targeted location, with both blastomere-yolk interface and blastomere pores competent for delivery. Long-term survival of laser manipulated embryos to pec-fin stage was 89% and 100% for dechorionated and chorionated embryos, respectively. To our knowledge, this is the first report of DNA delivery into zebrafish embryos utilizing fs laser pulses. Biotechnol. Bioeng. 2007;98: 1230,1241. © 2007 Wiley Periodicals, Inc. [source] The MACPF/CDC family of pore-forming toxinsCELLULAR MICROBIOLOGY, Issue 9 2008Carlos J. Rosado Summary Pore-forming toxins (PFTs) are commonly associated with bacterial pathogenesis. In eukaryotes, however, PFTs operate in the immune system or are deployed for attacking prey (e.g. venoms). This review focuses upon two families of globular protein PFTs: the cholesterol-dependent cytolysins (CDCs) and the membrane attack complex/perforin superfamily (MACPF). CDCs are produced by Gram-positive bacteria and lyse or permeabilize host cells or intracellular organelles during infection. In eukaryotes, MACPF proteins have both lytic and non-lytic roles and function in immunity, invasion and development. The structure and molecular mechanism of several CDCs are relatively well characterized. Pore formation involves oligomerization and assembly of soluble monomers into a ring-shaped pre-pore which undergoes conformational change to insert into membranes, forming a large amphipathic transmembrane ,-barrel. In contrast, the structure and mechanism of MACPF proteins has remained obscure. Recent crystallographic studies now reveal that although MACPF and CDCs are extremely divergent at the sequence level, they share a common fold. Together with biochemical studies, these structural data suggest that lytic MACPF proteins use a CDC-like mechanism of membrane disruption, and will help understand the roles these proteins play in immunity and development. [source] NTPDase1 governs P2X7 -dependent functions in murine macrophagesEUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2010Sébastien A. Lévesque Abstract P2X7 receptor is an adenosine triphosphate (ATP)-gated ion channel within the multiprotein inflammasome complex. Until now, little is known about regulation of P2X7 effector functions in macrophages. In this study, we show that nucleoside triphosphate diphosphohydrolase 1 (NTPDase1)/CD39 is the dominant ectonucleotidase expressed by murine peritoneal macrophages and that it regulates P2X7 -dependent responses in these cells. Macrophages isolated from NTPDase1-null mice (Entpd1,/,) were devoid of all ADPase and most ATPase activities when compared with WT macrophages (Entpd1+/+). Entpd1,/, macrophages exposed to millimolar concentrations of ATP were more susceptible to cell death, released more IL-1, and IL-18 after TLR2 or TLR4 priming, and incorporated the fluorescent dye Yo-Pro-1 more efficiently (suggestive of increased pore formation) than Entpd1+/+ cells. Consistent with these observations, NTPDase1 regulated P2X7 -associated IL-1, release after synthesis, and this process occurred independently of, and prior to, cytokine maturation by caspase-1. NTPDase1 also inhibited IL-1, release in vivo in the air pouch inflammatory model. Exudates of LPS-injected Entpd1,/, mice had significantly higher IL-1, levels when compared with Entpd1+/+ mice. Altogether, our studies suggest that NTPDase1/CD39 plays a key role in the control of P2X7 -dependent macrophage responses. [source] Perfectly Ordered, Free-Standing Nanowire Arrays With Controllable Geometry,ADVANCED ENGINEERING MATERIALS, Issue 11 2009Adam Philip Robinson We demonstrate a novel focused ion beam (FIB) based technique for the production of substrate-supported, free-standing, perfectly ordered nanowire arrays with control over the pore geometry, pitch, diameter, and length. A FIB may be used to influence the site of pore formation in ultra-thin (<1 µm) oxide nanoporous templates adhered to substrates. Electrodeposition through the template results in the production of nanowire arrays with controlled, perfect ordering. [source] Peptides corresponding to helices 5 and 6 of Bax can independently form large lipid poresFEBS JOURNAL, Issue 5 2006Ana J. García-Sáez Proteins of the B-cell lymphoma protein 2 (Bcl2) family are key regulators of the apoptotic cascade, controlling the release of apoptotic factors from the mitochondrial intermembrane space. A helical hairpin found in the core of water-soluble folds of these proteins has been reported to be the pore-forming domain. Here we show that peptides including any of the two ,-helix fragments of the hairpin of Bcl2 associated protein X (Bax) can independently induce release of large labelled dextrans from synthetic lipid vesicles. The permeability promoted by these peptides is influenced by intrinsic monolayer curvature and accompanied by fast transbilayer redistribution of lipids, supporting a toroidal pore mechanism as in the case of the full-length protein. However, compared with the pores made by complete Bax, the pores made by the Bax peptides are smaller and do not need the concerted action of tBid. These data indicate that the sequences of both fragments of the hairpin contain the principal physicochemical requirements for pore formation, showing a parallel between the permeabilization mechanism of a complex regulated protein system, such as Bax, and the much simpler pore-forming antibiotic peptides. [source] Detergent-resistant membranes are platforms for actinoporin pore-forming activity on intact cellsFEBS JOURNAL, Issue 4 2006Jorge Alegre-Cebollada Sticholysin II is a pore-forming toxin produced by the sea anemone Stichodactyla helianthus. We studied its cytolytic activity on COS-7 cells. Fluorescence spectroscopy and flow cytometry revealed that the toxin permeabilizes cells to propidium cations in a dose-dependent and time-dependent manner. This permeabilization is impaired by preincubation of cells with cyclodextrin. Isolation of detergent-resistant cellular membranes showed that sticholysin II colocalizes with caveolin-1 in fractions corresponding to raft-like domains. The interaction of sticholysin II with such domains is only lipid dependent as it also occurs in the absence of any other membrane-associated protein. Toxin binding to raft-like lipid vesicles inhibited cell permeabilization. The results suggest that sticholysin II promotes pore formation in COS-7 cells through interaction with membrane domains which behave like cellular rafts. [source] Interaction of ostreolysin, a cytolytic protein from the edible mushroom Pleurotus ostreatus, with lipid membranes and modulation by lysophospholipidsFEBS JOURNAL, Issue 6 2003Kristina Sep Ostreolysin is a 16-kDa cytolytic protein specifically expressed in primordia and fruiting bodies of the edible mushroom Pleurotus ostreatus. To understand its interaction with lipid membranes, we compared its effects on mammalian cells, on vesicles prepared with either pure lipids or total lipid extracts, and on dispersions of lysophospholipids or fatty acids. At nanomolar concentrations, the protein lysed human, bovine and sheep erythrocytes by a colloid-osmotic mechanism, compatible with the formation of pores of 4 nm diameter, and was cytotoxic to mammalian tumor cells. A search for lipid inhibitors of hemolysis revealed a strong effect of lysophospholipids and fatty acids, occurring below their critical micellar concentration. This effect was distinct from the capacity of ostreolysin to bind to and permeabilize lipid membranes. In fact, permeabilization of vesicles occurred only when they were prepared with lipids extracted from erythrocytes, and not with lipids extracted from P. ostreatus or pure lipid mixtures, even if lysophospholipids or fatty acids were included. Interaction with lipid vesicles, and their permeabilization, correlated with an increase in the intrinsic fluorescence and ,-helical content of the protein, and with aggregation, which were not detected with lysophospholipids. It appears that either an unknown lipid acceptor or a specific lipid complex is required for binding, aggregation and pore formation. The inhibitory effect of lysophospholipids may reflect a regulatory role for these components on the physiological action of ostreolysin and related proteins during fruiting. [source] DNA Sensing Using Nanocrystalline Surface-Enhanced Al2O3 Nanopore SensorsADVANCED FUNCTIONAL MATERIALS, Issue 8 2010Bala Murali Venkatesan Abstract A new solid-state, Al2O3 nanopore sensor with enhanced surface properties for the real-time detection and analysis of individual DNA molecules is reported. Nanopore formation using electron-beam-based decomposition transforms the local nanostructure and morphology of the pore from an amorphous, stoichiometric structure (O to Al ratio of 1.5) to a heterophase crystalline network, deficient in O (O to Al ratio of ,0.6). Direct metallization of the pore region is observed during irradiation, thereby permitting the potential fabrication of nanoscale metallic contacts in the pore region with application to nanopore-based DNA sequencing. Dose-dependent phase transformations to purely , and/or ,-phase nanocrystallites are also observed during pore formation, allowing for surface-charge engineering at the nanopore/fluid interface. DNA transport studies reveal an order-of-magnitude reduction in translocation velocities relative to alternate solid-state architectures, accredited to high surface-charge density and the nucleation of charged nanocrystalline domains. The unique surface properties of Al2O3 nanopore sensors make them ideal for the detection and analysis of single-stranded DNA, double-stranded DNA, RNA secondary structures, and small proteins. These nanoscale sensors may also serve as useful tools in studying the mechanisms driving biological processes including DNA,protein interactions and enzyme activity at the single-molecule level. [source] The potential roles of biological soil crusts in dryland hydrologic cyclesHYDROLOGICAL PROCESSES, Issue 15 2006Jayne Belnap Abstract Biological soil crusts (BSCs) are the dominant living cover in many drylands of the world. They possess many features that can influence different aspects of local hydrologic cycles, including soil porosity, absorptivity, roughness, aggregate stability, texture, pore formation, and water retention. The influence of biological soil crusts on these factors depends on their internal and external structure, which varies with climate, soil, and disturbance history. This paper presents the different types of biological soil crusts, discusses how crust type likely influences various aspects of the hydrologic cycle, and reviews what is known and not known about the influence of biological crusts on sediment production and water infiltration versus runoff in various drylands around the world. Most studies examining the effect of biological soil crusts on local hydrology are done by comparing undisturbed sites with those recently disturbed by the researchers. Unfortunately, this greatly complicates interpretation of the results. Applied disturbances alter many soil features such as soil texture, roughness, aggregate stability, physical crusting, porosity, and bulk density in ways that would not necessarily be the same if crusts were not naturally present. Combined, these studies show little agreement on how biological crusts affect water infiltration or runoff. However, when studies are separated by biological crust type and utilize naturally occurring differences among these types, results indicate that biological crusts in hyperarid regions reduce infiltration and increase runoff, have mixed effects in arid regions, and increase infiltration and reduce runoff in semiarid cool and cold drylands. However, more studies are needed before broad generalizations can be made on how biological crusts affect infiltration and runoff. We especially need studies that control for sub-surface soil features such as bulk density, micro- and macropores, and biological crust structure. Unlike the mixed effects of biological crusts on infiltration and runoff among regions, almost all studies show that biological crusts reduce sediment production, regardless of crust or dryland type.Copyright © 2006 John Wiley & Sons, Ltd. [source] DNA Sensors: Highly Sensitive, Mechanically Stable Nanopore Sensors for DNA Analysis (Adv. Mater.ADVANCED MATERIALS, Issue 27 200927/2009) A new solid state nanopore biosensor for the analysis of individual DNA molecules is reported by Rashid Bashir and co-workers on p. 2771. The cover illustrates the passage of double-stranded DNA through an Al2O3 nanopore sensor fabricated using ALD and e-beam-induced sputtering processes. Hexagonal ,-phase Al2O3 nanocrystallites form during pore formation as shown, improving the mechanical stability and sensitivity of these nanopore sensors. The CMOS-compatible nature of this process establishes this technology as a potential candidate for next-generation DNA sequencing. [source] Selective Barrier Perforation in Porous Alumina Anodized on Substrates,ADVANCED MATERIALS, Issue 7 2008Jihun Oh A new method for perforating the barrier oxide at the base of pores in alumina, which does not involve etching of the alumina, is reported. Anodization of Al layers on W leads to formation of WO3 "plugs" that can be selectively etched without widening the as-anodized pores. We demonstrate this technique, used with templated pore formation, by creating Ni nanoelectrode arrays with fixed electrode spacings (200,nm) but varied electrode diameters. [source] Synthesis, structure, and selective separation behavior of copper-imprinted microporous polymethacrylate beadsAICHE JOURNAL, Issue 12 2009Nguyen To Hoai Abstract Metal ion-imprinted polymethacrylate beads with sizes ranging from 100 to 300 ,m were prepared by suspension polymerization for the application of selective separation of target metal ions. The metal ion contacting area of the beads was enlarged via pore formation (BET 425 m2/g) using toluene as a porogenic agent. The synthesis of the copper-imprinted porous beads was verified using FTIR, SEM, and ESCA. Separation capacity and selectivity were investigated carrying out column separation experiments. The selective adsorption behavior of the imprinted beads was significantly affected by flow rate, pH, and metal ion concentration in the solution. Adsorption of the copper ion, the template metal ion, onto the beads was highly selective, compared with other ions such as nickel and zinc, with the selective coefficients at approximately 5,10. The microporous particles possessing such high selectivity has a potential application as novel column packing materials especially requiring high selective efficiency, which is usually not achievable by commercial ion exchange resins. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source] Analysis of spatial cross-correlations in multi-constituent volume dataJOURNAL OF MICROSCOPY, Issue 2 2008A. RACK Summary We investigate spatial cross-correlations between two constituents, both belonging to the same microstructure. These investigations are based on two approaches: one via the measurement of the cross-correlation function and the other uses the spatial distances between the constituents. The cross-correlation function can be measured using the fast Fourier transform, whereas the distances are determined via the Euclidean distance transform. The characteristics are derived from volume images obtained by synchrotron microtomography. As an example we consider pore formation in metallic foams, knowledge of which is important to control the foam production process. For this example, we discuss the spatial cross-correlation between the pore space and the blowing agent particles in detail. [source] Real-time monitoring of the membrane-binding and insertion properties of the cholesterol-dependent cytolysin anthrolysin O from Bacillus anthracis,JOURNAL OF MOLECULAR RECOGNITION, Issue 4 2006Simon Cocklin Abstract Bacillus anthracis has recently been shown to secrete a potently hemolytic/cytolytic protein that has been designated anthrolysin O (ALO). In this work, we initiated a study of this potential anthrax virulence factor in an effort to understand the membrane,binding properties of this protein. Recombinant anthrolysin O (rALO35,512) and two N-terminally truncated versions of ALO (rALO390,512 and rALO403,512) from B. anthracis were overproduced in Escherichia coli and purified to homogeneity. The role of cholesterol in the cytolytic activity of ALO was probed in cellular cholesterol depletion assays using mouse and human macrophage-like lines, and also Drosophila Schneider 2 cells. Challenging the macrophage cells with rALO35,512, but not rALO390,512 or rALO403,512, resulted in cell death by lysis, with this cytolysis being abolished by depletion of the membrane cholesterol. Drosophila cells, which contain ergosterol as their major membrane sterol, were resistant to rALO-mediated cytolysis. In order to determine the molecular mechanism of this resistance, the interaction of rALO with model membranes comprised of POPC alone, or with a variety of structurally similar sterols including ergosterol, was probed using Biacore. Both rALO35,512 and rALO403,512 demonstrated robust binding to model membranes composed of POPC and cholesterol, with amount of protein bound proportional to the cholesterol content. Ergosterol supported greatly reduced binding of both rALO35,512 and rALO403,512, whereas other sterols tested did not support binding. The rALO403,512,membrane interaction demonstrated an equilibrium dissociation constant (KD) in the low nanomolar range, whereas rALO35,512 exhibited complex kinetics likely due to the multiple events involved in pore formation. These results establish the pivotal role of cholesterol in the action of rALO. The biosensor method developed to measure ALO recognition of cholesterol in a membrane environment could be extended to provide a platform for the screening of inhibitors of other membrane-binding proteins and peptides. Copyright© 2006 John Wiley & Sons, Ltd. [source] Different mechanisms of action of antimicrobial peptides: insights from fluorescence spectroscopy experiments and molecular dynamics simulations,JOURNAL OF PEPTIDE SCIENCE, Issue 9 2009Gianfranco Bocchinfuso Abstract Most antimicrobial peptides exert their activity by interacting with bacterial membranes, thus perturbing their permeability. They are investigated as a possible solution to the insurgence of bacteria resistant to the presently available antibiotic drugs. However, several different models have been proposed for their mechanism of membrane perturbation, and the molecular details of this process are still debated. Here, we compare fluorescence spectroscopy experiments and molecular dynamics (MD) simulations regarding the association with lipid bilayers and lipid perturbation for two different amphiphilic helical antimicrobial peptides, PMAP-23 and trichogin GA IV. PMAP-23, a cationic peptide member of the cathelicidin family, is considered to induce membrane permeability according to the Shai-Matsuzaki-Huang "carpet" model, while trichogin GA IV is a neutral peptide, member of the peptaibol family. Although several lines of evidence suggest a "barrel-stave" mechanism of pore formation for the latter peptide, its length is only half the normal thickness of a lipid bilayer. Both fluorescence spectroscopy experiments and MD simulations indicated that PMAP-23 associates with membranes close to their surface and parallel to it, and in this arrangement it causes a severe perturbation to the bilayer, both regarding its surface tension and lipid order. By contrast, trichogin GA IV can undergo a transition from a surface-bound state to a transmembrane orientation. In the first arrangement, it does not cause any strong membrane perturbation, while in the second orientation it might be able to span the bilayer from one side to the other, despite its relatively short length, by causing a significant thinning of the membrane. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd. [source] Parallel and antiparallel dimers of magainin 2: their interaction with phospholipid membrane and antibacterial activityJOURNAL OF PEPTIDE SCIENCE, Issue 10 2002Yasuhiro Mukai Abstract Magainin 2 (M2) forms pores by associating with several other M2 molecules in lipid membranes and shows antibacterial activity. To examine the effect of M2 dimerization on biological activity and membrane interaction, parallel and antiparallel M2 dimers were prepared from two monomeric precursors. Antibacterial and haemolytic activities were enhanced by dimerization. CD measurements showed that both dimers and monomers have an ,-helical structure in the presence of lipid vesicles. Tryptophan fluorescence shift and KI quenching studies showed that all the peptides were more deeply embedded in acidic liposomes than in neutral liposomes. Experiments on dye-leakage activity and membrane translocation of peptides suggest that dimers and monomers form pores through lipid membranes, although the pore formation may be accompanied by membrane disturbance. Although dimerization of M2 increased the interaction activity with lipid membranes, no appreciable difference between the activities of parallel and antiparallel M2 dimers was observed. Copyright © 2002 European Peptide Society and John Wiley & Sons, Ltd. [source] Glycosylphosphatidylinositols are potential targets for the development of novel inhibitors for aerolysin-type of pore-forming bacterial toxinsMEDICINAL RESEARCH REVIEWS, Issue 2 2010Qiuye Wu Abstract Many bacteria produce toxins that cause damage through the formation of pores in the host cell membrane. Some of these toxins, such as aerolysin, use glycosylphosphatidylinositols (GPIs) as their binding receptors to assist the pore formation on the host cell surface and the subsequent insertion of the resultant pores into the cell membrane. GPIs are a class of complex glycolipids that anchor surface proteins and glycoproteins onto the cell membrane in eukaryotic species. This review has summarized the reported evidences supporting the GPI-dependent pore-forming mechanism for aerolysin-type of toxins and analyzed the possibility of targeting this unique process for the design and development of novel GPI-based inhibitors for these pore-forming bacterial toxins. © 2009 Wiley Periodicals, Inc. Med Res Rev, 30, No. 2, 258,269, 2010 [source] Proinflammatory signalling stimulated by the type III translocation factor YopB is counteracted by multiple effectors in epithelial cells infected with Yersinia pseudotuberculosisMOLECULAR MICROBIOLOGY, Issue 5 2003Gloria I. Viboud Summary Type III secretion systems are used by several pathogens to translocate effector proteins into host cells. Yersinia pseudotuberculosis delivers several Yop effectors (e.g. YopH, YopE and YopJ) to counteract signalling responses during infection. YopB, YopD and LcrV are components of the translocation machinery. Here, we demonstrate that a type III translocation protein stimulates proinflammatory signalling in host cells, and that multiple effector Yops counteract this response. To examine proinflammatory signalling by the type III translocation machinery, HeLa cells infected with wild-type or Yop,Y. pseudotuberculosis strains were assayed for interleukin (IL)-8 production. HeLa cells infected with a YopEHJ, triple mutant released significantly more IL-8 than HeLa cells infected with isogenic wild-type, YopE,, YopH, or YopJ, bacteria. Complementation analysis demonstrated that YopE, YopH or YopJ are sufficient to counteract IL-8 production. IL-8 production required YopB, but did not require YopD, pore formation or invasin-mediated adhesion. In addition, YopB was required for activation of nuclear factor kappa B, the mitogen-activated protein kinases ERK and JNK and the small GTPase Ras in HeLa cells infected with the YopEHJ, mutant. We conclude that interaction of the Yersinia type III translocator factor YopB with the host cell triggers a proinflammatory signalling response that is counteracted by multiple effectors in host cells. [source] Single crystalline 2D porous arrays obtained by self organization in n-InPPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 1 2003S. Langa Abstract Self organization is a rather common phenomenon during pore formation in III,V semiconductors. The so called tetrahedron-like pores, the domains of crystallographically oriented pores in n-GaAs, or the macroscopic voltage oscillations in n-InP at high constant current densities are examples of a self organization process. In this paper we will discuss two-dimensional arrays of pores in n-InP with the unique property that they may form a single crystal as a result of a self organization process. The reasons for this long range order and its dependence on the etching conditions will be discussed. [source] An approach to characterizing single-subunit mutations in multimeric prepores and pores of anthrax protective antigenPROTEIN SCIENCE, Issue 2 2009Blythe E. Janowiak Abstract Heptameric pores formed by the protective antigen (PA) moiety of anthrax toxin translocate the intracellular effector moieties of the toxin across the endosomal membrane to the cytosol of mammalian cells. We devised a protocol to characterize the effects of individual mutations in a single subunit of heptameric PA prepores (pore precursors) or pores. We prepared monomeric PA containing a test mutation plus an innocuous Cys-replacement mutation at a second residue (Lys563, located on the external surface of the prepore). The introduced Cys was biotinylated, and the protein was allowed to cooligomerize with a 20-fold excess of wild-type PA. Finally, biotinylated prepores were freed from wild-type prepores by avidin affinity chromatography. For the proof of principle, we examined single-subunit mutations of Asp425 and Phe427, two residues where Ala replacements have been shown to cause strong inhibitory effects. The single-subunit D425A mutation inhibited pore formation by >104 and abrogated activity of PA almost completely in our standard cytotoxicity assay. The single-subunit F427A mutation caused ,100-fold inhibition in the cytotoxicity assay, and this effect was shown to result from a combination of strong inhibition of translocation and smaller effects on pore formation and ligand affinity. Our results show definitively that replacing a single residue in one subunit of the heptameric PA prepore can inhibit the transport activity of the oligomer almost completely,and by different mechanisms, depending on the specific residue mutated. [source] Calcium signaling leads to mitochondrial depolarization in impact-induced chondrocyte death in equine articular cartilage explantsARTHRITIS & RHEUMATISM, Issue 7 2007C. A. M. Huser Objective Chondrocyte apoptosis is an important factor in the progression of osteoarthritis. This study aimed to elucidate the mechanisms involved upstream of caspase 9 activation and, in particular, calcium signaling and mitochondrial depolarization. Methods Articular cartilage explants obtained from healthy horses were subjected to a single impact load (500-gm weight dropped from a height of 50 mm) and cultured in vitro for up to 48 hours. Chondrocyte death was quantified by the TUNEL method. Release of proteoglycans was determined by the dimethylmethylene blue assay. Weight change was measured, and mitochondrial depolarization was determined using JC-1 staining. To assess the role of calcium signaling in impact-induced chondrocyte death, explants were preincubated in culture medium containing various concentrations of calcium. Inhibitors were used to assess the role of individual signaling components in impact-induced chondrocyte death. Results Calcium quenching, inhibitors of calpains, calcium/calmodulin-regulated kinase II (CaMKII), and mitochondrial depolarization reduced impact-induced chondrocyte death after 48 hours in culture. Transient mitochondrial depolarization was observed 3,6 hours following a single impact load. Mitochondrial depolarization was prevented by calcium quenching, inhibitors of calpain, CaMKII, permeability transition pore formation, ryanodine receptor, and the mitochondrial uniport transporter. Cathepsin B did not appear to be involved in impact-induced chondrocyte death. The calpain inhibitor prevented proteoglycan loss, but the percentage weight gain and proteoglycan loss were unaffected by all treatments used. Conclusion Following a single impact load, calcium is released from the endoplasmic reticulum via the ryanodine receptor and is taken up by the mitochondria via the uniport transporter, causing mitochondrial depolarization and caspase 9 activation. In addition, calpains and CaMKII play important roles in causing mitochondrial depolarization. [source] Crystallization and preliminary crystallographic analysis of fragaceatoxin C, a pore-forming toxin from the sea anemone Actinia fragaceaACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 4 2009A. E. Mechaly Sea anemones produce water-soluble toxins that have the ability to interact with cell membranes and form pores within them. The mechanism of pore formation is based on an initial binding step followed by oligomerization and membrane insertion. Although the final structure of the pore remains unclear, biochemical studies indicate that it consists of a tetramer with a functional radius of ,1.1,nm. Since four monomers seem to be insufficient to build a pore of this size, the currently accepted model suggests that lipids might also participate in its structure. In this work, the crystallization and preliminary crystallographic analysis of two crystal forms of fragaceatoxin C (FraC), a newly characterized actinoporin from Actinia fragacea, are described. The crystals diffracted up to 1.8,Å resolution and the preliminary molecular-replacement solution supports an oligomeric structure of about 120,Å in diameter. [source] Disperse distribution of cationic amino acids on hydrophilic surface of helical wheel enhances antimicrobial peptide activityBIOTECHNOLOGY & BIOENGINEERING, Issue 2 2010Young Soo Kim Abstract The antimicrobial action of amphipathic antimicrobial peptides (AMPs) generally depends on perturbation of the bacterial membrane via electrostatic interactions promoting initial binding to the surface and hydrophobic interactions for pore formation into the membrane. Several studies have focused on the structure,activity relationship (SAR) of AMPs by modulation of structural parameters. However, modulation of one parameter commonly induces simultaneous changes in other parameters, making it difficult to investigate the specific influence of a single variable. In the present work, we investigated the distribution effect of cationic amino acids on the hydrophilic surface of the helical wheel using model AMPs composed of only lysine (K) and leucine (L) as representative cationic and hydrophobic residues, respectively, under conditions in which other parameters are fixed. Based on SAR analyses of ,-helical KL model AMPs displaying different cationic distributions, we propose that the dispersity of cationic amino acids on the hydrophilic surface is a factor that contributes to the antimicrobial activity of AMP. Moreover, antimicrobial activity is enhanced by rearrangement of cationic amino acids to promote dispersed distribution. We confirmed the cationic distribution effect using natural AMP-derived ,-helical CRAMP18 and its analogs. Our data show that accumulation of lysine shifts in the CRAMP18 analog leads to higher dispersion, and subsequently to improved antimicrobial activity. Therefore, we propose that the cationic distribution effect can be applied for the rational redesign of amino acid sequences to improve the antimicrobial activities of natural ,-helical AMPs, in combination with regulation of other known structural parameters. Biotechnol. Bioeng. 2010;107: 216,223. © 2010 Wiley Periodicals, Inc. [source] Regulation of Exocytosis in Chromaffin Cells by Trans -Insertion of Lysophosphatidylcholine and Arachidonic Acid into the Outer Leaflet of the Cell MembraneCHEMBIOCHEM, Issue 12 2006Christian Amatore Prof. Abstract Vesicular exocytosis is an important complex process in the communication between cells in organisms. It controls the release of chemical and biochemical messengers stored in an emitting cell. In this report, exocytosis is studied amperometrically (at carbon fiber ultramicroelectrodes) at adrenal chromaffin cells, which release catecholamines after appropriate stimulation, while testing the effects due to trans -insertion of two exogenous compounds (lysophosphatidylcholine (LPC) and arachidonic acid (AA)) on the kinetics of exocytotic events. Amperometric analyses showed that, under the present conditions (short incubation times and micromolar LPC or AA solutions), LPC favors catecholamine release (rate, event frequency, charge released) while AA disfavors the exocytotic processes. The observed kinetic features are rationalized quantitatively by considering a stalk model, for the fusion pore formation, and the physical constraints applied to the cell membrane by the presence of small fractions of LPC and AA diluted in its external leaflet (trans -insertion). We also observed that the detected amount of neurotransmitters in the presence of LPC was larger than under control conditions, while the opposite trend is observed with AA. [source] Templated assembly of the pH-sensitive membrane-lytic peptide GALACHEMICAL BIOLOGY & DRUG DESIGN, Issue 6 2004D.H. Haas Abstract:, Delivery of protein or nucleic acid therapeutics into intracellular compartments may require facilitation to allow these macromolecules to cross otherwise impermeant cellular membranes. Peptides capable of forming membrane-spanning channels hold promise as just such facilitators, although the requirement for peptide oligomerization to form these channels may limit their effectiveness. Synthetic molecules containing multiple copies of membrane-active peptides attached to a template molecule in a pre-oligomerized form have attracted interest for drug-delivery applications. Using three template designs, we synthesized multimeric versions of the pH-sensitive lytic peptide GALA and compared their performance to monomeric GALA. Template assembly stabilized helix formation: templated GALA retained , -helical structure even at neutral pH, unlike monomeric GALA. In membrane leakage assays, templated GALA retained the pH sensitivity of the monomer, with improved leakage for dimeric GALA. Surprisingly, trimeric GALA was less effective, particularly when synthesized with a larger and more flexible spacer. Surface plasmon resonance analysis indicated that reversible binding of templated GALA to lipid surfaces at acidic conditions was greatly reduced compared with monomeric GALA, but that the amount of irreversibly bound material was similar. We interpreted these results to indicate that templated peptides may cyclize into ,self-satisfied' oligomeric structures, incapable of further aggregation and subsequent pore formation. Future design of templated peptides must be carefully performed to avoid this unwanted consequence. [source] Pore-Forming Properties of Alamethicin F50/5 Inserted in a Biological MembraneCHEMISTRY & BIODIVERSITY, Issue 6 2007Natascia Vedovato Abstract The pore-forming properties of native and synthetic alamethicins were investigated in photoreceptor rod outer segments (OS) isolated from frog retina, and recorded in whole-cell configuration. The peptaibols were applied (and removed) to (from) the OS within less than 50,ms by means of a computer-controlled micro-perfusion system. Once blocked with light, the main OS endogenous conductance, the OS membrane resistance was >1,G,, allowing low-noise and high-resolution recordings. Currents of ca. 700,pA were recorded in symmetric K+ (100,mM) and Ca2+ (1,mM), upon applying 1,,M of alamethicin F50/5 or its [L -Glu(OMe)7,18,19] analogue to the OS membrane (clamped at ,20,mV). In the latter peptide, the Gln residues at positions 7, 18, and 19 were substituted with side-chain esterified Glu residues. For both peptides, the current activated exponentially, with a delay from peptide application, and exponentially returned to zero without any delay, upon removing the peptide from the external solution. The delay as well as the activation (,a) and deactivation (,d) time constants of the current produced by the modified alamethicin were much slower, and the current noise was much larger, with respect to the corresponding values for alamethicin F50/5. Therefore, the above three Gln residues are not a key factor for pore formation, but the [L -Glu(OMe)7,18,19] analogue produces larger pores with a lower probability of formation. [source] |