Home About us Contact | |||
Pore Fluid Pressure (pore + fluid_pressure)
Selected AbstractsFluid injection and surface deformation at the KTB location: modelling of expected tilt effectsGEOFLUIDS (ELECTRONIC), Issue 1 2005T. JAHR Abstract This investigation is indented to explore the relationship between changes in pore fluid pressure and deformation of the land surface induced by a large-scale injection experiment at the KTB site. Deformation will be monitored by ASKANIA borehole tiltmeters at five locations. During the year 2003, a network of borehole tiltmeters was installed, data transmission links established and tested, and recording of tilt data started. Our first main interest was to receive data sets of all stations well before the injection experiment to start in May 2004, to be able to evaluate local site effects. Thus, the separation of injection-induced effects will be more reliable. Principal 3D numerical modelling (poro-elastic modelling and investigations, using the finite element method, FEM) of poro-elastic behaviour showed that significant tilt amplitudes can be expected during controlled fluid injection. Observed deformation will be investigated within the framework of the fluid flow behaviour and resulting deformation. Two models have been used: a coupled hydro geomechanical finite element model (abaqus) and, as a first step, also a multi-layered poro-elastic crust (poel). With the numerical model two effects can be quantified: (i) the deformation of the upper crust (tilt measurements) and (ii) the spatial distribution and the changes of material properties in the KTB area. The main aim of the project is to improve the knowledge of coupled geomechanic,hydraulic processes and to quantify important parameters. Thus, the understanding of fracture-dominated changes of the hydrogeological parameters will be enhanced, geomechanical parameter changes and the heterogeneity of the parameter field quantified. In addition, the induced stress field variation can be explained, which is believed to be mainly responsible for the increase of local seismic activity. Here, we introduce the tiltmeter array at the KTB site, the modelling for a poro-elastic crust and the preliminary FEM modelling. [source] Reconstruction of palaeo-burial history and pore fluid pressure in foothill areas: a sensitivity test in the Hammam Zriba (Tunisia) and Koh-i-Maran (Pakistan) ore depositsGEOFLUIDS (ELECTRONIC), Issue 2 2003L. Benchilla Abstract The burial and pore fluid pressure history of fluorite ore deposits is reconstructed: (i) at Hammam Zriba,Djebel Guebli along the eastern margin of the Tunisian Atlas; and (ii) at Koh-i-Maran within the northern part of the Kirthar Range in Pakistan. Both the deposits are hosted by Late Jurassic carbonate reservoirs, unconformably overlain by Late Cretaceous seals. Microthermometric analyses on aqueous and petroleum fluid inclusions with pressure,volume,temperature,composition (PVTX) modeling of hydrocarbon fluid isochores are integrated with kinematics and thermal 2D basin modeling in order to determine the age of mineralization. The results suggest a Cenozoic age for the fluorite mineralization and a dual fluid migration model for both ore deposits. The PVTX modeling indicates that the initial stage of fluorite cementation at Hammam Zriba occurred under fluid pressures of 115 ± 5 bars and at a temperature close to 130°C. At Koh-i-Maran, the F3 geodic fluorite mineralization developed under hydrostatic pressures of 200 ± 10 bars, and at temperatures of 125,130°C. The late increase in temperature recorded in the F3 fluorites can be accounted for by rapid rise of hotter fluids (up to 190°C) along open fractures, resulting from hydraulic fracturing of overpressured sedimentary layers. [source] Chemically induced deformation of a porous layer coupled with advective,dispersive transport.INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 8 2001Analytical solutions Abstract In this paper a chemically induced deformation of porous material taking place during advective,dispersive transport of a chemical is considered. Linearized governing equations are derived and analytical solutions of 2 one-dimensional problems for a homogeneous layer with drained boundaries are developed. Numerical results for a particular clayey material and a chemical migrating through the layer showing distributions of concentration of chemical, changes in porosity of the material and pore fluid pressure, and evolution of settlement of the layer as functions of time are discussed. Copyright © 2001 John Wiley & Sons, Ltd. [source] Dynamics of unsaturated soils using various finite element formulationsINTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 5 2009Nadarajah Ravichandran Abstract Unsaturated soils are three-phase porous media consisting of a solid skeleton, pore liquid, and pore gas. The coupled mathematical equations representing the dynamics of unsaturated soils can be derived based on the theory of mixtures. Solution of these fully coupled governing equations for unsaturated soils requires tremendous computational resources because three individual phases and interactions between them have to be taken into account. The fully coupled equations governing the dynamics of unsaturated soils are first presented and then two finite element formulations of the governing equations are presented and implemented within a finite element framework. The finite element implementation of all the terms in the governing equations results in the complete formulation and is solved for the first time in this paper. A computationally efficient reduced formulation is obtained by neglecting the relative accelerations and velocities of liquid and gas in the governing equations to investigate the effects of fluid flow in the overall behavior. These two formulations are used to simulate the behavior of an unsaturated silty soil embankment subjected to base shaking and compared with the results from another commonly used partially reduced formulation that neglects the relative accelerations, but takes into account the relative velocities. The stress,strain response of the solid skeleton is modeled as both elastic and elastoplastic in all three analyses. In the elastic analyses no permanent deformations are predicted and the displacements of the partially reduced formulation are in between those of the reduced and complete formulations. The frequency of vibration of the complete formulation in the elastic analysis is closer to the predominant frequency of the base motion and smaller than the frequencies of vibration of the other two analyses. Proper consideration of damping due to fluid flows in the complete formulation is the likely reason for this difference. Permanent deformations are predicted by all three formulations for the elastoplastic analyses. The complete formulation, however, predicts reductions in pore fluid pressures following strong shaking resulting in somewhat smaller displacements than the reduced formulation. The results from complete and reduced formulations are otherwise comparable for elastoplastic analyses. For the elastoplastic analysis, the partially reduced formulation leads to stiffer response than the other two formulations. The likely reason for this stiffer response in the elastoplastic analysis is the interpolation scheme (linear displacement and linear pore fluid pressures) used in the finite element implementation of the partially reduced formulation. Copyright © 2008 John Wiley & Sons, Ltd. [source] Hybrid and enhanced finite element methods for problems of soil consolidationINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 2 2007X. X. Zhou Abstract Hybrid and enhanced finite element methods with bi-linear interpolations for both the solid displacements and the pore fluid pressures are derived based on mixed variational principles for problems of elastic soil consolidation. Both plane strain and axisymmetric problems are studied. It is found that by choosing appropriate interpolation of enhanced strains in the enhanced method, and by choosing appropriate interpolations of strains, effective stresses and enhanced strains in the hybrid method, the oscillations of nodal pore pressures can be eliminated. Several numerical examples demonstrating the capability and performance of the enhanced and hybrid finite element methods are presented. It is also shown that for some situations, such as problems involving high Poisson's ratio and in other related problems where bending effects are evident, the performance of the enhanced and hybrid methods are superior to that of the conventional displacement-based method. The results from the hybrid method are better than those from the enhanced method for some situations, such as problems in which soil permeability is variable or discontinuous within elements. Since all the element parameters except the nodal displacements and nodal pore pressures are assumed in the element level and can be eliminated by static condensation, the implementations of the enhanced method and the hybrid method are basically the same as the conventional displacement-based finite element method. The present enhanced method and hybrid method can be easily extended to non-linear consolidation problems. Copyright © 2006 John Wiley & Sons, Ltd. [source] |