Home About us Contact | |||
Pore Filling (pore + filling)
Selected AbstractsVoltammetric Antioxidant Analysis in Mineral Oil Samples Immobilized into Boron-Doped Diamond Micropore Array ElectrodesELECTROANALYSIS, Issue 12 2009Xiaohang Zhang Abstract Mineral oil microdroplets containing the model antioxidant N,N -didodecyl- N,,N, -diethyl-phenylene-diamine (DDPD) are immobilized into a 100×100 pore-array (ca. 10,,m individual pore diameter, 100,,m pitch) in a boron-doped diamond electrode surface. The robust diamond surface allows pore filling, cleaning, and reuse without damage to the electrode surface. The electrode is immersed into aqueous electrolyte media, and voltammetric responses for the oxidation of DDPD are obtained. In order to further improve the current responses, 20,wt% of carbon nanofibers are co-deposited with the oil into the pore array. Voltammetric signals are consistent with the oxidation of DDPD and the associated transfer of perchlorate anions (in aqueous 0.1,M NaClO4) or the transfer of protons (in aqueous 0.1,M HClO4). From the magnitude of the current response, the DDPD content in the mineral oil can be determined down to less than 1,wt% levels. Perhaps surprisingly, the reversible (or midpoint) potential for the DDPD oxidation in mineral oil (when immersed in 0.1 NaClO4) is shown to be concentration-dependent and to shift to more positive potential values for more dilute DDPD in mineral oil solutions. An extraction mechanism and the formation of a separate organic product phase are proposed to explain this behavior. [source] Pore-Filling of Spiro-OMeTAD in Solid-State Dye Sensitized Solar Cells: Quantification, Mechanism, and Consequences for Device PerformanceADVANCED FUNCTIONAL MATERIALS, Issue 15 2009I-Kang Ding Abstract In this paper, the pore filling of spiro-OMeTAD (2,2,,7,7,-tetrakis-(N,N -di- p -methoxyphenylamine)9,9,-spirobifluorene) in mesoporous TiO2 films is quantified for the first time using XPS depth profiling and UV,Vis absorption spectroscopy. It is shown that spiro-OMeTAD can penetrate the entire depth of the film, and its concentration is constant throughout the film. We determine that in a 2.5-µm-thick film, the volume of the pores is 60,65% filled. The pores become less filled when thicker films are used. Such filling fraction is much higher than the solution concentration because the excess solution on top of the film can act as a reservoir during the spin coating process. Lastly, we demonstrate that by using a lower spin coating speed and higher spiro-OMeTAD solution concentration, we can increase the filling fraction and consequently the efficiency of the device. [source] In-situ small-angle neutron scattering study of pore filling and pore emptying in ordered mesoporous silicaJOURNAL OF APPLIED CRYSTALLOGRAPHY, Issue 1 2010M. Erko The capillary condensation and capillary emptying of water and perfluoropentane in ordered mesoporous SBA-15 silica is studied by in-situ small-angle neutron scattering (SANS). The SANS data can be perfectly described by a simple analytical model for spatially random pore filling (Laue scattering) for the entire range of pore-filling fractions. From this it is concluded that recently proposed pore correlations due to elastic interactions between neighbouring pores upon capillary condensation do not play a role in this system. The pores fill randomly according to their size distribution, in perfect agreement with the classical Kelvin equation. The relation between the overall pore-filling fraction as determined from the volumetric sorption isotherm, and the fraction of completely filled pores as obtained from the fit of the SANS data, allows conclusions to be drawn about the thermodynamic metastability of the adsorption process. [source] Multistep filling of porous silicon with conductive polymer by electropolymerizationPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 6 2009Kazuhiro Fukami Abstract The filling of porous silicon with polypyrrole by electropolymerization was investigated. The filling with polypyrrole proceeded preferentially along the porous silicon wall, leading to the formation of tubular structures. By repeating the porosification, the pore filling and the additional porosification, through-tubes of polypyrrole were formed in macropores. The technique to form through-tube was also applied to medium-sized pores. A double layer with polypyrrole was produced by the repetition of porosification and pore filling twice. The immobilization of glucose oxidase was performed by electropolymerization in an aqueous solution containing glucose oxidase and pyrrole. Glucose oxidase was immobilized physically in the polypyrrole film. In the double layer, the sensitivity of glucose oxidase was measured by electrochemical oxidation of hydrogen peroxide, which was produced by the enzymatic reaction of glucose oxidase to gluconolactone. When glucose oxidase was immobilized in the upper layer, glucose was detected sensitively. On the other hand, when glucose oxidase was immobilized in the lower layer, the sensing current showed a slow and a low response. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |