Home About us Contact | |||
Porcine Oocytes (porcine + oocyte)
Selected AbstractsMolecular Reproduction & Development: Volume 77, Issue 2MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 2 2010Article first published online: 16 DEC 200 Stratified porcine oocyte treated with actinomycin D to compact the nucleolus. The brown, pigmented organelles are lipid droplets. Kyogoku et al. (in this issue) show this compacted nucleolus supports the development of enucleolated full-grown oocytes. [source] Global H3K9 dimethylation status is not affected by transcription, translation, or DNA replication in porcine zygotesMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 5 2010Ki-Eun Park Methylation of the lysine 9 residue of histone H3 (H3K9) is linked to transcriptional repression. The observed structure of chromatin in porcine and murine embryos is different with regard to H3K9 dimethylation status, leading to our hypothesis that the intracellular mechanisms responsible for H3K9 methylation would also differ between these two species. The objectives of this study were: (1) to determine the extent that DNA, mRNA, and protein synthesis serve in maintaining the asymmetrical distribution of dimethylated H3K9 in porcine zygotes, (2) determine the extent to which the intracellular localization of individual pronuclei correlated with H3K9 dimethylation status, and (3) to determine the abundance of transcripts encoding the histone methyltransferases, with H3K9 methylation activity, in porcine oocytes and embryos. Our findings are that (1) H3K9 dimethylation status is not affected by DNA replication, transcription, or protein synthesis, (2) the location of a pronucleus does not significantly affect the H3K9 dimethylation status of the chromatin within that pronucleus, and (3) the histone methyltransferases with activity for H3K9 differ in transcript abundance in porcine oocytes and cleavage stage embyros. These results support our hypothesis that there is a difference in intracellular mechanisms affecting dimethylation status of H3K9 between porcine and murine embryos. Mol. Reprod. Dev. 77: 420,429, 2010. © 2010 Wiley-Liss, Inc. [source] Molecular characterization and polyadenylation-regulated expression of cyclin B1 and Cdc2 in porcine oocytes and early parthenotesMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 1 2010Ding-Xiao Zhang Meiotic maturation of mammalian oocytes is controlled by the maturation/M-phase promotion factor (MPF), a complex of Cdc2 kinase and cyclin B protein. To better understand the molecular mechanism of oocyte maturation, we characterized porcine cyclin B1 and Cdc2 genes, both of which are widely expressed in pig tissues. We further analyzed their expression profiles during in vitro maturation of pig oocyte and early embryonic development at both the mRNA and protein level. Two isoforms of cyclin B1, comprising the same open reading frame but differing in 3,-UTR length, were identified. Cyclin B1 transcripts was up-regulated after 30,hr of maturation, while Cdc2 mRNA levels were unchanged during maturation except for a sharp decline at 44,hr. Cyclin B1 protein synthesis increased with oocyte maturation. Cdc2 protein expression was relatively low during 0,18,hr, followed by a higher level of expression up to 44,hr of maturation. Poly(A)-test PCR clearly revealed that both cyclin B1 isoforms underwent cytoplasmic polyadenylation starting around 18,24,hr during maturation, while a substantial de-adenylation and degradation of Cdc2 isoforms were observed in metaphase II oocytes and during embryo development after parthenogenetic activation. Porcine MII oocytes derived from small follicles (,3,mm) and bad quality 2-cell parthenotes showed lower developmental competence and lower levels of cyclin B1 protein, and Cdc2 mRNA or both gene mRNAs, respectively, compared to their control counterparts. These results suggested that cyclin B1 was regulated posttranscriptionally by cytoplasmic polyadenylation during porcine oocyte maturation. Further, the decreased expression of maternal cyclin B1 and Cdc2 at the mRNA or protein level in developmentally incompetent oocytes and embryos was responsible for, at least in part, a profound defect in further embryonic development. Mol. Reprod. Dev. 77: 38,50, 2010. © 2009 Wiley-Liss, Inc. [source] An environmentally-relevant mixture of organochlorines and its vehicle control, dimethylsulfoxide, induce ultrastructural alterations in porcine oocytesMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 1 2006Céline Campagna Abstract Organochlorine chemicals accumulate in the environment, particularly in the Arctic, and constitute potential developmental hazards to wildlife and human health. Although some of their harmful effects are recognized, their mechanisms of action within the target cells need to be better understood. This study was designed to test the hypothesis that an environmentally-relevant organochlorine mixture alters oocyte ultrastructure in the porcine model. Immature cumulus,oocyte complexes (COCs), partially cultured (18 hr) COCs without treatment or exposed to the organochlorine mixture or its vehicle (0.1% dimethysulfoxide; DMSO) during culture were processed for light and transmission electronic microscopy (TEM). The organochlorines induced major ultrastructural changes in the COCs: decreased density of the lipid droplets, increased smooth endoplasmic reticulum (SER) volume and increased interactions among SER, mitochondria, lipid droplets and vesicles. We suggest that these ultrastructural changes facilitate energy formation necessary to produce metabolizing enzymes. Other ultrastructural changes may reflect some degree of organochlorine toxicity: fewer gap junctions and decreased electron density of the cortical granules. Unexpectedly, the DMSO control treatment also induced similar ultrastructural changes, but to a lesser degree than the organochlorine mixture. This study is the first to demonstrate the effect of environmental contaminants on mammalian oocyte ultrastructure. Mol. Reprod. Dev. © 2005 Wiley-Liss, Inc. [source] Timing of Plk1 and MPF activation during porcine oocyte maturation,MOLECULAR REPRODUCTION & DEVELOPMENT, Issue 1 2004Martin Anger Abstract A Polo-like kinase 1 (Plk1) appears involved in an autocatalytic loop between CDC25C phosphatase and M phase promoting factor (MPF) in Xenopus oocytes and leads to activation of MPF that is required for germinal vesicle breakdown (GVBD). Although similar evidence for such a role of Plk1 in MPF activation during maturation of mammalian oocytes is absent, changes in Plk1 enzyme activity correlate with MPF activation, Plk1 co-localizes with MPF, and microinjection of antibodies neutralizing Plk1 delays GVBD. In this study, we exploited the prolonged time required for maturation of porcine oocytes to define precisely the timing of Plk1 and MPF activation during maturation. GVBD typically occurs between 24 and 26 hr of culture in vitro and meiotic maturation is completed after 40,44-hr culture. We find that Plk1 is activated before MPF, which is consistent with its role in activating MPF in mammalian oocytes. Mol. Reprod. Dev. 69: 11,16, 2004. © 2004 Wiley-Liss, Inc. [source] Glutathione and adenosine triphosphate content of in vivo and in vitro matured porcine oocytesMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 4 2003A.M. Brad Abstract Glutathione (GSH) content in mature porcine oocytes is correlated with subsequent fertilization and developmental success. Adenosine triphosphate (ATP) is an important energy source for maintaining cellular activities and protein synthesis. The objective of this study was to compare GSH and ATP concentrations of in vivo and in vitro matured porcine oocytes. Ovulated, in vivo matured oocytes were frozen at ,80°C in groups of 10,20 (GSH) or 5,10 (ATP). In vitro oocytes were matured in either tissue culture medium-199 (TCM199) supplemented with polyvinyl alcohol (PVA) or hyaluronic acid (MAP5), or North Carolina State University-23 (NCSU23) supplemented with porcine follicular fluid (pFF) and frozen as described, or fertilized and cultured. GSH content was determined by the dithionitrobenzoic acid,glutathione disulfide (DTNB,GSSG) reductase recycling assay. ATP content was determined by using the Bioluminescent Somatic Cell Assay Kit. Oocytes matured in vitro in defined TCM199 with PVA or hyaluronic acid, or NCSU23 with pFF had significantly lower concentrations (P,<,0.05) of GSH (n,=,207, 9.82,±,0.71 pmol/oocyte; n,=,104, 9.73,±, 0.81 pmol/oocyte; n,=,108, 7.89,±,0.66 pmol/oocyte, respectively) compared to in vivo matured oocytes (n,=,217, 36.26,±,11.00 pmol/oocyte). Concentrations of ATP were not different between treatments (in vivo, n,=,70, 0.97,±,0.07 pmol/oocyte; TCM,PVA, n,=,117, 0.81,±,0.13 pmol/oocyte; TCM,MAP, n,=,107, 1.02,±,0.18 pmol/oocyte; NCSU,pFF, n,=,134, 0.71,±,0.08 pmol/oocyte). Intracellular ATP content does not appear to be related to developmental potential in porcine oocytes. Low intracellular GSH may be responsible, in part, for lower developmental competence observed in in vitro matured porcine oocytes. Mol. Reprod. Dev. 64: 492,498, 2003. © 2003 Wiley-Liss, Inc. [source] Germinal vesicle materials are not required for the activation of MAP kinase in porcine oocyte maturationMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 2 2001K. Sugiura Abstract The requirement of the germinal vesicle (GV) for the normal kinetics of mitogen-activated protein (MAP) kinase activity during porcine oocyte maturation was investigated. Porcine follicular oocytes were enucleated, and the locations of their extracellular signal-regulated kinases 1 and 2 (ERK1/2), major MAP kinases in maturating porcine oocytes, were detected by indirect immunofluorescent microscopy. The MAP kinase activity was assayed as myelin basic protein (MBP) kinase activity, and the phosphorylation states of ERK1/2 were detected by immunoblotting analyses. Translocation of MAP kinase into the GV and association with the spindle were observed in intact oocytes, while MAP kinase in enucleated oocytes was distributed almost uniformly in cytoplasm throughout the culturing period. The phosphorylation and the activation of MAP kinase were induced, and the activity was comparable with that of control denuded oocytes. The high level of activity was maintained through maturation, even in the absence of spindle formation. These results indicate that the presence of nuclear material and translocation into the GV are dispensable for the activation of MAP kinase and that associating with the spindle is not required for maintenance of its activity though porcine oocyte maturation. Mol. Reprod. Dev. 59:215,220, 2001. © 2001 Wiley-Liss, Inc. [source] Synergistic Effect of Porcine Follicular Fluid and Dibutyryl Cyclic Adenosine Monophosphate on Development of Parthenogenetically Activated Oocytes from Pre-Pubertal GiltsREPRODUCTION IN DOMESTIC ANIMALS, Issue 5 2010AB Nascimento Contents This study investigated the effect of porcine follicular fluid (PFF) and dibutyryl cyclic adenosine monophosphate (dbcAMP) during in vitro maturation (IVM) of porcine oocytes on meiotic maturation, fertilization and embryo development, and compared the effect of supplementing the embryo culture media with PFF or foetal bovine serum (FBS) on embryo development. Oocytes from pre-pubertal gilts were IVM for 44 h, and parthenogenetically activated or in vitro -fertilized. Embryos were cultured in porcine zygote medium (PZM3) for 7 days. Cleavage and blastocyst rates were evaluated at 48 h and 7 days of culture. The supplementation of the IVM medium with 25% PFF and 1 mm dbcAMP for the first 22 h resulted in more (p < 0.05) embryos developing to the blastocyst stage as compared with the inclusion of dbcAMP alone. The dbcAMP + PFF combination increased (p < 0.05) the average number of nuclei per blastocyst as compared with either of these components alone or in its absence. A synergistic effect of dbcAMP + PFF during IVM was also reflected in the capacity of oocytes to regulate sperm penetration and prevent polyspermy, as twice as many oocytes from the control group were penetrated by more than one sperm as compared with those matured in the presence of both dbcAMP and PFF. The supplementation of PZM3 with 10% FBS from days 5 to 7 of culture significantly improved the total cell quantity in embryos derived either from control or dbcAMP + PFF matured oocytes. There was no effect on the total cell quantity when FBS was replaced by the same concentration of PFF. These studies showed that dbcAMP, PFF and FBS can improve both the quantity (57.3% vs 41.5%) and quality (74.8 vs 33.3 nuclei) of porcine blastocysts derived from oocytes recovered of pre-pubertal gilts. [source] Porcine CPEB1 is involved in Cyclin B translation and meiotic resumption in porcine oocytesANIMAL SCIENCE JOURNAL, Issue 4 2010Yukio NISHIMURA ABSTRACT Ovarian immature oocytes accumulate many dormant maternal mRNAs, which have short poly(A) tails. Cytoplasmic-polyadenylation-element binding protein (CPEB) has been reported to play key roles for the elongation of the tails and the translation of these mRNAs in Xenopus oocytes. However, the functions of CPEB in meiotic resumption have not yet been established in mammalian oocytes. The present study examined the roles of porcine CPEB in Cyclin B syntheses and meiotic resumption of porcine oocytes. Porcine CPEB1 (pCPEB1) cDNA was cloned from total RNA of immature oocytes by RT-PCR. The overexpression of pCPEB1 by mRNA injection into immature oocytes increased Cyclin B expression and the rate of meiotic resumption. Conversely, the inhibition of endogenous CPEB by expression of a dominant-negative mutant pCPEB1 (AA-CPEB), which replaced the expected phosphorylation sites with alanines, had the effect of inhibiting Cyclin B synthesis, ribosomal S6 kinase phosphorylation (an indicator of Mos activity), and meiotic resumption. The inhibition of porcine Aurora A by an injection of antisense RNA enhanced the inhibitory effects of AA-CPEB. These results suggest the involvement of mammalian CPEB1 in Cyclin B syntheses and meiotic resumption in mammalian oocytes. In addition, the phosphorylation sites of pCPEB1 were identified and are suggested to be phosphorylated by porcine Aurora A. [source] Phosphorylation of inositol 1,4,5-triphosphate receptor 1 during in vitro maturation of porcine oocytesANIMAL SCIENCE JOURNAL, Issue 1 2010Junya ITO ABSTRACT During fertilization in mammalian species, a sperm-induced intracellular Ca2+ signal ([Ca2+]i) mediates both exit of meiosis and oocyte activation. Recently, we demonstrated in mouse oocytes that the phosphorylation levels of inositol 1,4,5 trisphosphate receptor type1 (IP3R1), the channel responsible for Ca2+ release and oscillations during fertilization, changed during maturation and fertilization. Therefore, we examined the expression and phosphorylation of IP3R1 during in vitro maturation of pig oocytes. Here, our present study shows that expression of IP3R1 protein did not change during maturation, although the phosphorylation status of the receptor, specifically at an MPM-2 epitope, did. We found that while at the beginning of maturation IP3R1 lacked MPM-2 immunoreactivity, it became MPM-2 reactive by 24 h and reached maximal reactivity by 36 h. Interestingly, the acquisition of MPM-2 reactivity coincided with the activation of p34cdc2 kinase and mitogen-activated protein kinase (MAPK), which are involved in meiotic progression. Following completion of maturation, inactivation of MAPK by U0126 did not affect IP3R1 phosphorylation, although inactivation of p34cdc2 kinase by roscovitine dramatically reduced IP3R1 phosphorylation. Neither inhibitor affected total expression of IP3R1. Altogether, our results show that IP3R1 undergoes dynamic phosphorylation during maturation and this might underlie the generation of oscillations at fertilization. [source] Possible involvement of phosphatidylinositol 3-kinase in the maintenance of metaphase II attest in porcine oocytes matured in vitroANIMAL SCIENCE JOURNAL, Issue 1 2010Junya ITO ABSTRACT It has been reported that phosphatidylinositol 3-kinase (PI3K)-protein kinase B (PKB) pathway plays a crucial role in the meiotic resumption and progression to the metaphase II (MII) stage of oocytes. However, the role of this pathway in meiotic arrest at the MII stage (cytostatic activity) is not well understood. In this study the effect of a PI3K inhibitor, LY294002, on the MAPK and p34cdc2 kinase activities of matured porcine oocytes was examined. After maturation culture, both the MAPK and p34cdc2 kinase activities in the oocytes were gradually decreased in a time-dependent manner. Although 25 µmol/L LY294002 did not affect either the MAPK or p34cdc2 kinase activities, 50 µmol/L LY294002 suppressed the PKB phosphorylation and slightly decreased MAPK activity, but not the p34cdc2 kinase activity. Therefore the effect of 10 µmol/L Ca2+ ionophore which was reported as inducing a transient decrease of p34cdc2 kinase but not MAPK activities, was also examined in LY294002-treated oocytes. By additional treatment with LY294002 after Ca2+ ionophore, both the MAPK and p34cdc2 kinase activities were decreased in a time-dependent manner, concomitantly with improvement of pronuclear formation. Therefore, we concluded that PI3K is involved in the maintenance of MAPK activity in matured porcine oocytes. [source] Embryo development of porcine oocytes after injection with miniature pig sperm and their extractsANIMAL SCIENCE JOURNAL, Issue 6 2009Daizou MATSUURA ABSTRACT This study examined embryo development of porcine oocytes after microinjection of sperm extracts (SE) in porcine intracytoplasmic sperm injection (ICSI). SE was prepared from miniature pig sperm by a nonionic surfactant, and various concentrations (0.02, 0.04 and 0.08 mg/mL) of SE were injected into the matured oocytes with a first polar body. In the pronuclear stage, the rate of oocytes with two pronuclei and a second polar body (21.4%) in the sperm and SE (0.04 mg/mL) injection group was significantly higher (P < 0.05) compared to other groups. The rate of 2,4-cell stage in sperm and SE (0.04 mg/mL) injection group was 38.1%, and it was significantly higher than that in the sperm injection group (22.9%). The rate of blastocyst stage in sperm and SE (0.04 mg/mL) injection group was 21.4%, the value was significantly higher than those in SE (0.08 mg/mL) injection group (0%), sperm injection group (5.7%), and sperm and SE (0.08 mg/mL) injection group (2.6%). These results suggest that SE induces activation of porcine oocytes and their further embryonic development, and that SE is effective for porcine ICSI. [source] Nitric oxide and ovarian functionANIMAL SCIENCE JOURNAL, Issue 3 2006Masa-aki HATTORI ABSTRACT Nitric oxide (NO) is synthesized by three NO synthases, designated as NOS-1, NOS-2, and NOS-3, with distinct features and localization. Nitric oxide and the reactive oxygen species generated from NO react with a wide variety of biomolecules such as DNA, transcription factors, enzymes, cytokines, and membrane receptors in NO synthesized cells and nearby cells to mediate a variety of biological functions. Nitric oxide synthase-2 and NOS-3 are expressed in the ovary during folliculogenesis and luteinization. Nitric oxide functions as an important modulator for folliculogenesis and atresia, steroidogenesis, prostaglandin biosynthesis, ovulation, luteolysis, and oocyte maturation. Nitric oxide synthase-3 is also localized in the porcine oocytes of the primordial follicles as well as in large follicles. It has been proved that NO is involved in intracellular signaling for oocyte growth and maturation at the pre-ovulatory stage. [source] Changes in the amount of proteins, glycogen and lipids in porcine oocytes during in vitro meiotic maturationANIMAL SCIENCE JOURNAL, Issue 5 2002Sueo NIIMURA ABSTRACT Changes in the cytoplasmic inclusions during meiotic maturation were histochemically examined in cultured porcine oocytes. The oocytes contained a small amount of protein and glycogen granules throughout the maturation culture, as well as Sudanophilic lipids composed of small, medium and large droplets. Soon after collection, the amount of Sudanophilic lipid droplets of small and medium size was small and there were 167 ± 11.2 large droplets. After being cultured for 22 h, the number of large lipid droplets decreased remarkably, while the number of small and medium ones increased. There were no differences in the number of Sudanophilic lipid droplets of different sizes between ovulated oocytes and the oocytes cultured for 44 h. The oocytes always contained a large amount of neutral fats and lipoids, but not cholesterols. In the oocytes cultured for 22 h with olomoucine, both the resumption of nuclear maturation and the decrease in the size of the Sudanophilic lipid droplets were inhibited. From the present findings, it appears that the change in the size of the Sudanophilic lipid droplets in the cytoplasm of porcine oocytes is closely related to nuclear maturation. [source] |