Polytene Chromosomes (polytene + chromosome)

Distribution by Scientific Domains


Selected Abstracts


cDNA cloning, heat shock regulation and developmental expression of the hsp83 gene in the Mediterranean fruit fly Ceratitis capitata

INSECT MOLECULAR BIOLOGY, Issue 6 2006
M. A. Theodoraki
Abstract This report presents the cDNA cloning, heat shock regulation and developmental expression of the hsp90 gene homologue of the Mediterranean fruit fly Ceratitis capitata (medfly). The isolated cDNA contained the coding region, the 3,UTR and most of the 5,UTR of the medfly hsp90 homologue, which was named Cchsp83. The deduced CcHSP83 polypeptide contained all the highly conserved amino acid segments that characterize the cytosolic members of the HSP90 family. Genomic analysis showed that the Cchsp83 gene is unique and was mapped at the 94C division of the sixth polytene chromosome. The size of the Cchsp83 mRNA was found to be approximately 2.7 kb. The predicted molecular mass of the CcHSP83 protein was 81.4 kDa, while the apparent molecular weight estimated by SDS-PAGE was approximately 90 kDa. Phylogenetic analysis based on 14 insect HSP90 amino acid sequences was consistent with the known phylogeny at low taxonomic level. The Cchsp83 gene is constitutively expressed in all stages of medfly development and is induced from a low level to several-fold by heat, depending on the developmental stage. Heat shock induction begins at 30 °C, reaching a maximum between 35 and 41 °C. Cchsp83 RNA expression is highly regulated during embryonic development; however, the temporal fluctuations in RNA levels during embryogenesis were not followed by similar fluctuations in the levels of the protein. [source]


Mi-2 chromatin remodeling factor functions in sensory organ development through proneural gene repression in Drosophila

DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 7 2006
Yasutoyo Yamasaki
Mi-2, the central component of the nucleosome remodeling and histone deacetylation (NuRD) complex, is known as an SNF2-type ATP-dependent nucleosome remodeling factor. No morphological mutant phenotype of Drosophila Mi-2 (dMi-2) had been reported previously; however, we found that rare escapers develop into adult flies showing an extra bristle phenotype. The dMi-2 enhanced the phenotype of acHw49c, which is a dominant gain-of-function allele of achaete (ac) and produces extra bristles. Consistent with these observations, the ac -expressing proneural clusters were expanded, and extra sensory organ precursors (SOP) were formed in the dMi-2 mutant wing discs. Immunostaining of polytene chromosomes showed that dMi-2 binds to the ac locus, and dMi-2 and acetylated hisotones distribute on polytene chromosomes in a mutually exclusive manner. The chromatin immunoprecipitation assay of the wing imaginal disc also demonstrated a binding of dMi-2 on the ac locus. These results suggest that the Drosophila Mi-2/NuRD complex functions in neuronal differentiation through the repression of proneural gene expression by chromatin remodeling and histone deacetylation. [source]


Characterization of the Hox gene cluster in the malaria vector mosquito, Anopheles gambiae

EVOLUTION AND DEVELOPMENT, Issue 6 2000
Martin P. Devenport
SUMMARY The Hox genes play a central role in regulating development and are involved in the specification of cell fates along the anteroposterior axis. In insects and vertebrates, these genes are clustered and organized in an arrangement that is largely conserved across evolutionary lineages. By exploiting the sequence conservation of the homeobox, orthologues of the Hox genes Sex combs reduced (Scr ,), fushi tarazu (ftz,), Antennapedia (Antp), Ultrabithorax (Ubx,), and abdominal-A (abd-A) have been isolated from the malaria vector mosquito, Anopheles gambiae. These genes were first identified in Drosophila, where they achieve a high level of functional complexity, in part, by the use of alternative promoters, polyadenylation sites, and splicing to generate different protein isoforms. Preliminary analyses of the Anopheles Hox genes suggest that they do not achieve their functional complexity in the same manner. Using a combination of in situ hybridization to polytene chromosomes and chromosome walking, the Anopheles Hox genes have been localized to a single cluster in the region 19D,E on chromosome 2R, a situation distinct from that of Drosophila where the Hox complex is split into two clusters. This study, therefore, provides a framework for future comparative analyses of the structure, organization, and expression of developmental regulatory genes between the lower and higher Diptera. Moreover, the genes that have been isolated enhance the genetic and physical maps of chromosome 2R in this medically important mosquito species. [source]


Evidence of multiple chromosomal inversions in Aedes aegypti formosus from Senegal

INSECT MOLECULAR BIOLOGY, Issue 5 2009
S. A. Bernhardt
Abstract Chromosomal inversions are prevalent in mosquito species but polytene chromosomes are difficult to prepare and visualize in members of the tribe Aedinii and thus there exists only indirect evidence of inversions. We constructed an F1 intercross family using a P1 female from a laboratory strain of Aedes aegypti aegypti (Aaa) and a P1 male Aedes aegypti formosus (Aaf) from a strain collected from south-eastern Senegal. Recombination rates in the F2 offspring were severely reduced and genotype ratios suggested a deleterious recessive allele on chromosome 3. The F2 linkage map was incongruent in most respects with the established map for Aaa. Furthermore, no increased recombination was detected in F5 offspring. Recombination rates and gene order were consistent with the presence in Aaf of at least four large inversions on chromosome 1, a single small inversion on chromosome 2 and three inversions on chromosome 3. [source]


The DNA puff 4C expresses a salivary secretion protein in Trichosia pubescens (Diptera; Sciaridae)

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 2 2008
Luiz Paulo Andrioli
Abstract DNA puffs are genomic regions of polytene chromosomes that undergo developmentally controlled DNA amplification and transcription in salivary glands of sciarid flies. Here, we tested the hypothesis that DNA puff genes code for salivary proteins in Trichosia pubescens. To do that, we generated antibodies against saliva and immunoscreened a cDNA library made from salivary glands. We isolated clones corresponding to DNA puff regions, including clone D-50 that contained the entire coding sequence of the previously isolated C4B1 gene from puff 4C. Indeed, we showed that puff 4C is a DNA puff region detecting its local transcription and its extra rounds of DNA incorporation compared to neighboring regions. We further confirmed D-50 clone identity in Western blots reacted with the anti-saliva anitiserum. We detected a recombinant protein expressed by this clone that had the expected size for a full-length product of the gene. We end with a discussion of the relationship between DNA puff genes and their products. Arch. Insect Biochem. Physiol. 2007. © 2007 Wiley-Liss, Inc. [source]


Incipient speciation revealed in Anastrepha fraterculus (Diptera; Tephritidae) by studies on mating compatibility, sex pheromones, hybridization, and cytology

BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1 2009
CARLOS CÁCERES
It has long been proposed that the nominal species Anastrepha fraterculus is a species complex and earlier studies showed high levels of pre-zygotic isolation between two laboratory strains from Argentina and Peru. Further experiments were carried out on the same populations and on their reciprocal hybrids, including pre- and post-zygotic isolation studies, pheromone analysis, and mitotic and polytene chromosome analysis. A high level of pre-zygotic isolation had been maintained between the parental strains despite 3 years of laboratory rearing under identical conditions. The level of pre-zygotic isolation was reduced in matings with hybrids. There were also differences in other components of mating behaviour. There were quantitative and qualitative differences in the sex pheromone of the two strains with the hybrids producing a mixture. The pre-zygotic isolation barriers were complemented by high levels of post-zygotic inviability and sex ratio distortion, most likely not due to Wolbachia, although there was evidence of some cytoplasmic factor involved in sex ratio distortion. Analysis of polytene chromosomes revealed a high level of asynapsis in the hybrids, together with karyotypic differences between the parental strains. The combined results of the present study indicate that these two strains belong to different biological entities within the proposed A. fraterculus complex. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 152,165. [source]