Polysaccharide Production (polysaccharide + production)

Distribution by Scientific Domains


Selected Abstracts


OPTIMAL CONDITIONS FOR THE GROWTH AND POLYSACCHARIDE PRODUCTION BY HYPSIZIGUS MARMOREUS IN SUBMERGED CULTURE

JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 4 2009
PING WANG
ABSTRACTS In submerged cultivation, many nutrient variables and environmental conditions have great influence on the growth and polysaccharide production by Hypsizigus marmoreus. Plackett,Burman design was used to determine the important nutrient factors. A central composite experimental design and surface response methodology were employed to optimize the factor levels. Prediction models for dry cell weight (DCW), polysaccharide outside cells (EPS) and polysaccharide inside cells (IPS) under important nutrient conditions were developed by multiple regression analysis and verified. By solving the equations, the optimal nutrient conditions for highest EPS production (9.62 g/L) were obtained at 6.77 g cornstarch/L, 36.57 g glucose/L, 3.5 g MgSO4/L and 6.14 g bean cake powder/L, under which DCW and IPS were 16.2 g/L and 1.46 g/L, close to the highest value under their corresponding optimal conditions. Optimal environmental conditions were obtained at 10% inoculation dose, 45 mL medium in a 250 mL flask, pH 6.5, 25C and 200 rpm according to the results of single-factor experiment design. PRACTICAL APPLICATIONS Hypsizigus marmoreus polysaccharides have many functional properties, including antitumor, antifungal and antiproliferative activities, and free-radical scavenging. Liquid cultivation could produce a higher yield of polysaccharides and more flexible sequential processing methods of H. marmoreus, compared with traditional solid-state cultivation. However, the cell growth and production of polysaccharides would be influenced by many factors, including nutrient conditions and environmental conditions in the liquid cultivation of H. marmoreus. Keeping the conditions at optimal levels can maximize the yield of polysaccharides. The study not only found out the optimal nutrient conditions and environmental conditions for highest cell growth and yield of polysaccharides, but also developed prediction models for these parameters with important nutrient variables. Yield of polysaccharide inside of cells was also studied as well as polysaccharides outside of cells and cell growth. The results provide essential information for production of H. marmoreus polysaccharides by liquid culture. [source]


Effect of galactose and glucose on the exopolysaccharide production and the activities of biosynthetic enzymes in Lactobacillus casei CRL 87

JOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2001
F. Mozzi
Aims: The objective of this work was to study the influence of the sugar source on exopolysaccharide (EPS) production and the activities of the enzymes involved in the synthesis of sugar nucleotides in Lactobacillus casei CRL 87. The relationship between these enzymes and EPS formation was determined. Methods and Results: The concentration of EPS was estimated by the phenol/sulphuric acid method while the chemical composition of purified EPS was investigated using gas-liquid chromatography. Biosynthetic enzyme activities were determined spectrophotometrically by measuring the formation or disappearance of NAD(P)H at 340 nm. Polysaccharide production by Lb. casei CRL 87 was 1·7 times greater on galactose than on glucose. The isolated polymer was composed of rhamnose, glucose and galactose. The activities of uridine-diphosphate (UDP)-glucose-pyrophosphorylase, thymidine-diphosphate (dTDP)-glucose-pyrophosphorylase and the dTDP-rhamnose-synthetic enzyme system were higher in galactose-grown than in glucose-grown cells. When an EPS, mutant strain was used, galactokinase activity was not detected on galactose, this sugar not being available for the formation of sugar nucleotides for further EPS production. dTDP-glucose-pyrophosphorylase and dTDP-rhamnose-synthetic enzyme system activities were lower than the values found for the wild type strain. Conclusions: The carbon source present in the culture medium affects EPS production by Lb. casei CRL 87. The greater polymer synthesis by galactose-grown cells is correlated with the higher UDP-glucose-pyrophosphorylase, dTDP-glucose-pyrophosphorylase and dTDP-rhamnose-synthetic enzyme system activities. Initial sugar metabolism is also an important step for the synthesis of EPS precursors by this strain. Significance and Impact of the Study: Knowledge of the effect of the sugar source on EPS production and the activities of biosynthetic enzymes provides information about the mechanisms of regulation of the synthesis of EPS which can contribute to improving polymer production. [source]


Interference of quorum sensing in Pseudomonas syringae by bacterial epiphytes that limit iron availability

ENVIRONMENTAL MICROBIOLOGY, Issue 6 2010
Glenn F. J. Dulla
Summary Leaf surfaces harbour bacterial epiphytes that are capable of influencing the quorum sensing (QS) system, density determination through detection of diffusible signal molecules, of the plant-pathogen Pseudomonas syringae pv. syringae (Pss) which controls expression of extracellular polysaccharide production, motility and other factors contributing to virulence to plants. Approximately 11% of the bacterial epiphytes recovered from a variety of plants produced a diffusible factor capable of inhibiting the QS system of Pss as indicated by suppression of ahlI. Blockage of QS by these interfering strains correlated strongly with their ability to limit iron availability to Pss. A direct relationship between the ability of isogenic Escherichia coli strains to sequester iron via their production of different siderophores and their ability to suppress QS in Pss was also observed. Quorum sensing induction was inversely related to iron availability in culture media supplemented with iron chelators or with FeCl3. Co-inoculation of interfering strains with Pss onto leaves increased the number of resultant disease lesions over twofold compared with that on plants inoculated with Pss alone. Transposon-generated mutants of interfering strains in which QS inhibition was blocked did not increase disease when co-inoculated with Pss. Increased disease incidence was also not observed when a non-motile mutant of Pss was co-inoculated onto plants with QS interfering bacteria suggesting that these strains enhanced the motility of Pss in an iron-dependent manner, leading to an apparent increase in virulence of this pathogen. Considerable cross-talk mediated by iron scavenging apparently occurs on plants, thereby altering the behaviour of bacteria such as Pss that exhibit important QS-dependent traits in this habitat. [source]


Cyanobacteria from benthic mats of Antarctic lakes as a source of new bioactivities

JOURNAL OF APPLIED MICROBIOLOGY, Issue 1 2008
N. Biondi
Abstract Aims:, To exploit the cyanobacterial diversity of microbial mats growing in the benthic environment of Antarctic lakes for the discovery of novel antibiotic and antitumour activities. Methods and results:, In all, 51 Antarctic cyanobacteria isolated from benthic mats were cultivated in the laboratory by optimizing temperature, irradiance and mixing. Productivity was generally very low (,60 mg l,1 d,1) with growth rates (,) in the range of 0·02,0·44 d,1. Growth rates were limited by photosensitivity, sensitivity to air bubbling, polysaccharide production or cell aggregation. Despite this, 126 extracts were prepared from 48 strains and screened for antimicrobial and cytotoxic activities. Seventeen cyanobacteria showed antimicrobial activity (against the Gram-positive Staphylococcus aureus, the filamentous fungus Aspergillus fumigatus or the yeast Cryptococcus neoformans), and 25 were cytotoxic. The bioactivities were not in accordance with the phylogenetic grouping, but rather strain-specific. One active strain was cultivated in a 10-l photobioreactor. Conclusions:, Isolation and mass cultivation of Antarctic cyanobacteria and LC-MS (liquid chromatography/mass spectrometry) fractionation of extracts from a subset of those strains (hits) that exhibited relatively potent antibacterial and/or antifungal activities, evidenced a chemical novelty worthy of further investigation. Significance and impact of the study:, Development of isolation, cultivation and screening methods for Antarctic cyanobacteria has led to the discovery of strains endowed with interesting antimicrobial and antitumour activities. [source]


OPTIMAL CONDITIONS FOR THE GROWTH AND POLYSACCHARIDE PRODUCTION BY HYPSIZIGUS MARMOREUS IN SUBMERGED CULTURE

JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 4 2009
PING WANG
ABSTRACTS In submerged cultivation, many nutrient variables and environmental conditions have great influence on the growth and polysaccharide production by Hypsizigus marmoreus. Plackett,Burman design was used to determine the important nutrient factors. A central composite experimental design and surface response methodology were employed to optimize the factor levels. Prediction models for dry cell weight (DCW), polysaccharide outside cells (EPS) and polysaccharide inside cells (IPS) under important nutrient conditions were developed by multiple regression analysis and verified. By solving the equations, the optimal nutrient conditions for highest EPS production (9.62 g/L) were obtained at 6.77 g cornstarch/L, 36.57 g glucose/L, 3.5 g MgSO4/L and 6.14 g bean cake powder/L, under which DCW and IPS were 16.2 g/L and 1.46 g/L, close to the highest value under their corresponding optimal conditions. Optimal environmental conditions were obtained at 10% inoculation dose, 45 mL medium in a 250 mL flask, pH 6.5, 25C and 200 rpm according to the results of single-factor experiment design. PRACTICAL APPLICATIONS Hypsizigus marmoreus polysaccharides have many functional properties, including antitumor, antifungal and antiproliferative activities, and free-radical scavenging. Liquid cultivation could produce a higher yield of polysaccharides and more flexible sequential processing methods of H. marmoreus, compared with traditional solid-state cultivation. However, the cell growth and production of polysaccharides would be influenced by many factors, including nutrient conditions and environmental conditions in the liquid cultivation of H. marmoreus. Keeping the conditions at optimal levels can maximize the yield of polysaccharides. The study not only found out the optimal nutrient conditions and environmental conditions for highest cell growth and yield of polysaccharides, but also developed prediction models for these parameters with important nutrient variables. Yield of polysaccharide inside of cells was also studied as well as polysaccharides outside of cells and cell growth. The results provide essential information for production of H. marmoreus polysaccharides by liquid culture. [source]


FLORIDOSIDE AS A CARBON PRECURSOR FOR THE SYNTHESIS OF CELL-WALL POLYSACCHARIDE IN THE RED MICROALGA PORPHYRIDIUM SP. (RHODOPHYTA),

JOURNAL OF PHYCOLOGY, Issue 5 2002
Shi-Yan Li
Although red algae are known to be obligatory photoautotrophs, the red microalga Porphyridium sp. was shown to assimilate and metabolize floridoside. A pulse-chase experiment with [14C]floridoside showed that at the end of a 240-min pulse, 70% of total 14C-uptake by the cells remained in the floridoside fraction. To evaluate the assimilation of floridoside by Porphyridium sp. cells, we exposed Porphyridium sp. not only to [14C]floridoside but also to its constituents, [14C]glycerol and [14C]galactose, as compared with [14C]bicarbonate. The extent of incorporation of [14C] galactose by the Porphyridium sp. cells was insignificant (50,80 dpm·mL,1), whereas uptake of 14C from [14C]glycerol into the algal cells was evident (2.4 × 103 dpm·mL,1) after 60 min of the pulse. The pattern of 14C distribution among the major constituent sugars, xylose, glucose and galactose, of the labeled soluble polysaccharide was dependent on the 14C source. The relative content of [14C]galactose in the soluble polysaccharide was highest (28.8%) for [14C]floridoside-labeled culture and lowest (19.8%) for the [14C]glycerol-labeled culture. Upon incubation of [14C]floridoside with a crude extract of a cell-free system prepared from nonlabeled cells of Porphyridium sp., the label was indeed found to be incorporated into the sulfated polysaccharide. Our results suggested that the carbon metabolic pathway in Porphyridium sp. passes through the low molecular weight photoassimilatory product,floridoside,toward sulfated cell-wall polysaccharide production. [source]


Screening for natural defence mechanisms of Lactococcus lactis strains isolated from traditional starter cultures

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 7 2007
Andreja Mikli
Summary Three different bacterial defence mechanisms were identified in the seventeen Lactococcus lactis isolates from starter cultures in three Slovenian dairy plants. Isolates MB18, KR7, PT4, PT13 and PT19 inhibited phage adsorption by means of exopolysaccharides production. The most extensive polysaccharides production was detected in PT19 isolate, which was susceptible only to phage ,PT19. Eight isolates exhibited nuclease activity, and seven of them were susceptible up to four phages out of thirteen from our collection. Eight isolates possessed the abiB gene, fourteen isolates abiH, two isolates abiJ and one isolate abiQ. Isolates PT27 and PT28 possessed AbiB, AbiH and AbiJ mechanisms as well as inhibition of phage adsorption. Isolate MB18, which was susceptible to one phage only, possessed the abiQ gene, nuclease activity and ability to prevent adsorption of most phages. Isolates PT67 and PT70, possessing only AbiH mechanism, were susceptible to only two phages. [source]