Polysaccharide Isolated (polysaccharide + isolated)

Distribution by Scientific Domains


Selected Abstracts


The emulsifying properties of a polysaccharide isolated from the fruit of Cordia abyssinica

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 5 2004
Mudadi Albert Nhamoiesu Benhura
Summary Polysaccharide was isolated from Cordia abyssinica and its effect, at differing concentrations, on its emulsifying ability was determined. Emulsions of vegetable oil containing up to 1% of the polysaccharide in phosphate pH 7.4 buffer, were prepared by using a hand piston homogenizer. Emulsification was assessed by diluting samples of the emulsions in sodium dodecyl sulphate and measuring absorbance at 500 nm. Addition of increasing concentrations of the polysaccharide up to 1% enhanced emulsification and emulsion stability. Above 1% concentration the polysaccharide solutions were too viscous for making emulsions conveniently. At a constant concentration of the polysaccharide, addition of up to a 1% concentration of salt enhanced emulsion formation. Further addition of salt above 1% resulted in no further changes in emulsifying ability, but the stability of the emulsions formed decreased on increasing the concentration of salt above 1%. The effect of pH on emulsifying ability was investigated by preparing emulsions using buffers of different pH, from pH 3 to pH 13. The polysaccharide had poor emulsifying ability below pH 7. Emulsifying ability increased with pH between pH 7 and 11. At pH above 11 there was a decrease in emulsifying ability. [source]


GLYCOSIDASE INHIBITORY ACTIVITY AND ANTIOXIDANT PROPERTIES OF A POLYSACCHARIDE FROM THE MUSHROOM INONOTUS OBLIQUUS

JOURNAL OF FOOD BIOCHEMISTRY, Issue 2010
HAIXIA CHEN
ABSTRACT A water-soluble polysaccharide from Inonotus obliquus (IOPS) was isolated from the mushroom Inonotus obliquus (Fr.) Pilat. The chemical compositions, molecular weight and inhibitory activities on glycosidase and antioxidant properties of IOPS were investigated. The results indicated that IOPS was an acid protein-bound polysaccharide, with a molecular weight of 1.7 × 104 Da and the contents of neutral sugar, protein and uronic acids being 42.5, 18.5 and 6.1%, respectively. IOPS exhibited an inhibitory activity against ,-glucosidase with the IC50 value of 93.3 µg/mL, whereas it had no effective inhibition on ,-amylase. Results of antioxidant activity assays revealed that IOPS had inhibitory activity on the concentration-dependent quenching of 1,1-Diphenyl-2-picrylhydrazyl and hydroxyl radicals. Furthermore, IOPS inhibited the formation of thiobarbituric acid-reactive substances in Fe2+/ascorbate-induced lipid peroxidation in rat liver tissue. These results clearly demonstrated that IOPS was one of the main bioactive components of I. obliquus that contributed to hypoglycemic activity and antioxidant activity. PRACTICAL APPLICATIONS Diabetes mellitus is one of the primary threats to human health because of its increasing prevalence, chronic course and disabling complications. Postprandial hyperglycemia plays an important role in the development of type 2 diabetes mellitus and complications associated with the disease. One therapeutic approach to decrease postprandial hyperglycemia is to retard the absorption of glucose through inhibition of carbohydrate-hydrolyzing enzymes in the digestive organs. In this study, a polysaccharide isolated from the mushroom Inonotus obliquus (IOPS) was shown to have notable glycosidase inhibitory effects and antioxidant activities. This research will benefit for the investigation of effective and safe ,-glucosidase inhibitors from natural materials. IOPS could be a good candidate for application in food and medicinal fields. It might be developed for functional food or lead compounds for use in antidiabetes. [source]


Composition and properties of biologically active pectic polysaccharides from leek (Allium porrum)

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 12 2010
Maria Kratchanova
Abstract BACKGROUND: Leek (Allium porrum) is very commonly used vegetable in Bulgaria and is distinctive with high content of bioactive components1. Previously2 we obtained five crude pectic polysaccharides from leek through consecutive extraction. Some of them appeared to be good stimulators of the immune system. Schols and Voragen3 investigated the composition of modified hairy regions of pectic polysaccharides isolated from leek cell walls. Samuelson et al.4 identified the polysaccharide structures encountered in hairy regions as bioactive. The aim of this work was to study the isolation, composition and biological activities of pectic polysaccharides from leek. RESULTS: Two pectic polysaccharides from leek were isolated through consecutive water and acid extraction. The water extractable pectin had higher polyuronic content, higher protein content and lower neutral sugar content. It was found that next to galacturonic acid they also contain glucuronic acid in ratio 9:1 for the water- and 3:1 for the acid-extractable polysaccharide. The main neutral sugar was galactose. The water-extractable pectic polysaccharide had higher molecular weight (106 Da) and homogeneity. It was shown that the pectic polysaccharides from leek have considerable immunostimulating activities. CONCLUSION: Leek polysaccharides have relatively high galacturonic and glucuronic acid content and are distinguished with high biological activity. Copyright © 2010 Society of Chemical Industry [source]


Arabidopsis XXT5 gene encodes a putative ,-1,6-xylosyltransferase that is involved in xyloglucan biosynthesis

THE PLANT JOURNAL, Issue 1 2008
Olga A. Zabotina
Summary The function of a putative xyloglucan xylosyltransferase from Arabidopsis thaliana (At1g74380; XXT5) was studied. The XXT5 gene is expressed in all plant tissues, with higher levels of expression in roots, stems and cauline leaves. A T-DNA insertion in the XXT5 gene generates a readily visible root hair phenotype (root hairs are shorter and form bubble-like extrusions at the tip), and also causes the alteration of the main root cellular morphology. Biochemical characterization of cell wall polysaccharides isolated from xxt5 mutant seedlings demonstrated decreased xyloglucan quantity and reduced glucan backbone substitution with xylosyl residues. Immunohistochemical analyses of xxt5 plants revealed a selective decrease in some xyloglucan epitopes, whereas the distribution patterns of epitopes characteristic for other cell wall polysaccharides remained undisturbed. Transformation of xxt5 plants with a 35S::HA-XXT5 construct resulted in complementation of the morphological, biochemical and immunological phenotypes, restoring xyloglucan content and composition to wild-type levels. These data provide evidence that XXT5 is a xyloglucan ,-1,6-xylosyltransferase, and functions in the biosynthesis of xyloglucan. [source]