Polymetallic Deposits (polymetallic + deposit)

Distribution by Scientific Domains


Selected Abstracts


Mineral Geochemical Compositions of Tourmalines and Their Significance in the Gejiu Tin Polymetallic Deposits, Yunnan, China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 1 2010
Runxing JIA
Abstract: The Gejiu tin polymetallic deposits are located in the southeastern part of Yunnan Province in China. A detailed electronic microprobe study has been carried out to document geochemical compositions of tourmalines from the deposits. The results indicate a systematic change of mineral geochemical compositions, which might be used as a mineral geochemical tracer for post-magmatic hydrothermal fluid, basin fluid and their mixture. The tourmalines from granite are schorl with Fe/(Fe+Mg) ratios of 0.912,1.00 and Na/(Na+Ca) ratios of 0.892,0.981. Tourmalines as an inclusion in quartz from the ore bodies are dravite with Fe/(Fe+Mg) ratios of 0.212,0.519 and Na/ (Na+Ca) ratios of 0.786,0.997. Tourmalines from the country rocks are dravite with Fe/(Fe+Mg) ratios of 0.313,0.337 and Na/(Na+Ca) ratio of 0.599,0.723. Tourmalines from cassiterite-tourmaline veins that occur in crannies within the country rocks show distinct optical zoning with alternate occurrence of dravite and schorl, Fe/(Fe+Mg)=0.374,0.843, Na/(Na+Ca)=0.538,0.987. It suggests that schorl in granite and dravite in carbonatite are related to magmatic fluid and basin fluid respectively. When magmatic fluid rose up and entered into crannies of the country rocks, consisting mainly of carbonatite, basin fluid would be constantly added to the magmatic fluid. The two types of fluid were mixed in structural crannies of the sedimentary basin accompanied with periodic geochemical osculations to form material records in chemical composition zonings of tourmalines. [source]


REE, Mn, Fe, Mg and C, O Isotopic Geochemistry of Calcites from Furong Tin Deposit, South China: Evidence for the Genesis of the Hydrothermal Ore-forming Fluids

RESOURCE GEOLOGY, Issue 1 2010
Yan Shuang
Abstract The Furong tin deposit in the central Nanling region, South China, consists of three main types of mineralization ores, i.e. skarn-, altered granite- and greisen-type ores, hosted in Carboniferous and Permian strata and Mesozoic granitic intrusions. Calcite is the dominant gangue mineral intergrown with ore bodies in the orefield. We have carried out REE, Mn, Fe, and Mg geochemical and C, and O isotopic studies on calcites to constrain the source and evolution of the ore-forming fluids. The calcites from the Furong deposit exhibit middle negative Eu anomaly (Eu/Eu*= 0.311,0.921), except for one which has an Eu/Eu* of 1.10, with the total REE content of 5.49,133 ppm. The results show that the calcites are characterized by two types of REE distribution patterns: a LREE-enriched pattern and a flat REE pattern. The LREE-enriched pattern of calcites accompanying greisen-type ore and skarn-type ore are similar to those of Qitianling granite. The REE, Mn, Fe, and Mg abundances of calcites exhibit a decreasing tendency from granite rock mass to wall rock, i.e. these abundances of calcites associated with altered granite-type and greisen-type ores are higher than those associated with skarn-type ores. The calcites from primary ores in the Furong deposit show large variation in carbon and oxygen isotopic compositions. The ,13C and ,18O of calcites are ,0.4 to ,12.7, and 2.8 to 16.4,, respectively, and mainly fall within the range between mantle or magmatic carbon and marine carbonate. The calcites from greisen and altered granite ores in the Furong deposit display a negative correlation in the diagram of ,13C versus ,18O, probably owing to the CO2 -degassing of the ore-forming fluids. From the intrusion to wall-rock, the calcites display an increasing tendency with respect to ,13C values. This implies that the carbon isotopic compositions of the ore-bearing fluids have progressively changed from domination by magmatic carbon to sedimentary carbonate carbon. In combination with other geological and geochemical data, we suggest that the ore-forming fluids represent magmatic origin. We believe that the fluids exsolved from fractionation of the granitic magma, accompanying magmatism of the Qitianling granite complex, were involved in the mineralization of the Furong tin polymetallic deposit. [source]


Cobalt Deposits of China: Classification, Distribution and Major Advances

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 2 2004
FENG Chengyou
Abstract, The important strategic metal cobalt has diverse uses and the majority of world cobalt deposits have been found in China. The deposits can be classified into four types, i.e., magmatic Ni-Cu-Co sulfide deposits, hydrothermal and volcanogenic cobalt polymetallic deposits, strata-bound Cu-Co deposits hosted by sedimentary rocks and lateritic Ni-Co deposits, of which the former two types are the most important. There are six principal metallogenic epochs and seven important metallogenic belts according to their distribution and tectonic position. Although cobalt generally occurs in nickel-copper, copper and iron deposits as an associated metal, great developments in exploration for independent cobalt deposits have happened in China, and, in recent years, many independent deposits with different elementary assemblages and different genetic types have been discovered in the eastern part of the northern margin of the North China platform, the Central Orogenic Belt of China, western Jiangxi and northeastern Hunan. In addition, it is inferred that the Kunlun-Qinling Orogenic Belt has great potential for further exploration of new types of independent cobalt deposits. [source]


Geochemistry of Subvolcanic-Type Copper-Silver Deposits in Eastern China

ACTA GEOLOGICA SINICA (ENGLISH EDITION), Issue 3 2000
GENG Wenhui
Abstract, The metallogenesis of subvolcanic deposits is controlled by subvolcanic activities. The copper polymetallic deposits are genetically related to intermediate-acid rocks, and the silver polymetallic deposits are more closely related to acid rocks. The abundance of Cu is relatively high in the intermediate-acid rocks and subvolcanic rocks, whereas the abundances of Pb, An and Ag are high in acid rocks, indicating rich ore-forming elements in original magmas. The study of REEs shows that the magmatic type related to copper deposits is the syntectic type, and that related to silver polymetallic deposits is mainly the re-melting type. The deposits were formed under medium-low temperatures and low salinity. The metallogenic times were the late stage of the early Yanshanian or the late Yanshanian, dating 78,147 Ma. [source]