Polymerization

Distribution by Scientific Domains
Distribution within Polymers and Materials Science

Kinds of Polymerization

  • Ring-Open polymerization
  • actin polymerization
  • addition fragmentation chain transfer polymerization
  • anionic polymerization
  • anionic ring-opening polymerization
  • atom transfer radical polymerization
  • atom-transfer radical polymerization
  • bulk polymerization
  • carbocationic polymerization
  • cationic polymerization
  • cationic ring-opening polymerization
  • chain transfer polymerization
  • chemical oxidative polymerization
  • chemical polymerization
  • condensation polymerization
  • controlled polymerization
  • controlled radical polymerization
  • controlled ring-opening polymerization
  • conventional free-radical polymerization
  • conventional radical polymerization
  • coordination polymerization
  • coupling polymerization
  • crosslinking polymerization
  • dispersion polymerization
  • dna polymerization
  • electrochemical polymerization
  • emulsion polymerization
  • enzymatic polymerization
  • ethylene polymerization
  • fragmentation chain transfer polymerization
  • free radical polymerization
  • free-radical polymerization
  • frontal polymerization
  • graft polymerization
  • grafting polymerization
  • in-situ polymerization
  • intercalative polymerization
  • interfacial polymerization
  • lactide polymerization
  • laser polymerization
  • live polymerization
  • metathesis polymerization
  • methacrylate polymerization
  • methyl methacrylate polymerization
  • microemulsion polymerization
  • microtubule polymerization
  • miniemulsion polymerization
  • mma polymerization
  • nitroxide-mediated polymerization
  • nitroxide-mediated radical polymerization
  • norbornene polymerization
  • olefin polymerization
  • opening polymerization
  • oxidative coupling polymerization
  • oxidative polymerization
  • phase polymerization
  • photoinitiated polymerization
  • plasma polymerization
  • precipitation polymerization
  • propylene polymerization
  • pulsed laser polymerization
  • radical polymerization
  • radical solution polymerization
  • raft polymerization
  • reverse atom transfer radical polymerization
  • reversible addition fragmentation chain transfer polymerization
  • ring opening polymerization
  • ring-opening metathesis polymerization
  • ring-opening polymerization
  • seeded emulsion polymerization
  • sequential anionic polymerization
  • situ intercalative polymerization
  • situ polymerization
  • soap-free emulsion polymerization
  • solid-state polymerization
  • solution polymerization
  • step-growth polymerization
  • stereoselective polymerization
  • styrene polymerization
  • surface polymerization
  • surface-initiated atom transfer radical polymerization
  • suspension polymerization
  • syndiospecific polymerization
  • thermal polymerization
  • transfer polymerization
  • transfer radical polymerization
  • tubulin polymerization
  • two-photon polymerization
  • two-step polymerization
  • vinyl polymerization

  • Terms modified by Polymerization

  • polymerization activity
  • polymerization behavior
  • polymerization catalyst
  • polymerization condition
  • polymerization control
  • polymerization degree
  • polymerization kinetics
  • polymerization leading
  • polymerization mechanism
  • polymerization method
  • polymerization methods
  • polymerization mixture
  • polymerization parameter
  • polymerization procedure
  • polymerization process
  • polymerization rate
  • polymerization reaction
  • polymerization reactor
  • polymerization route
  • polymerization shrinkage
  • polymerization step
  • polymerization system
  • polymerization technique
  • polymerization techniques
  • polymerization temperature
  • polymerization time
  • polymerization yield

  • Selected Abstracts


    The geometry and motion of nematode sperm cells

    CYTOSKELETON, Issue 6 2009
    Evgeny Demekhin
    Abstract The nematode sperm cell crawls by recycling major sperm protein (MSP) from dimers into subfilaments, filaments, and filament complexes, as a result of thermal writhing in the presence of hydrophobic patches. Polymerization near leading edges of the cell intercolates MSP dimers onto the tips of growing filament complexes, forcing them against the cell boundary, and extending the cytoskeleton in the direction of motion. Strong adhesive forces attach the cell to the substrate in the forward part of the lamellipod, while depolymerization in the rearward part of the cell breaks down the cytoskeleton, contracting the lamellipod and pulling the cell body forward. The movement of these cells, then, is caused by coordinated protrusive, adhesive and contractile forces, spatially separated across the lamellipod. This paper considers a phenomenological model that tracks discrete elements of the cytoskeleton in curvilinear coordinates. The pseudo-two dimensional model primarily considers protrusion and rotation of the cell, along with the evolution of the cell boundary. General assumptions are that pH levels within the lamellipod regulate protrusion, contraction and adhesion, and that growth of the cytoskeleton, over time, is perpendicular to the evolving cell boundary. The model follows the growth and contraction of a discrete number of MSP fiber complexes, since they appear to be the principle contributors for force generation in cell boundary protrusion and contraction, and the backbone for the dynamic geometry and motion. Cell Motil. Cytoskeleton 2009. 2009 Wiley-Liss, Inc. [source]


    Evolution and persistence of the cilium

    CYTOSKELETON, Issue 12 2007
    Peter Satir
    Abstract The origin of cilia, a fundamental eukaryotic organelle, not present in prokaryotes, poses many problems, including the origins of motility and sensory function, the origins of nine-fold symmetry, of basal bodies, and of transport and selective mechanisms involved in ciliogenesis. We propose the basis of ciliary origin to be a self-assembly RNA enveloped virus that contains unique tubulin and tektin precursors. The virus becomes the centriole and basal body, which would account for the self-assembly and self-replicative properties of these organelles, in contrast to previous proposals of spirochaete origin or endogenous differentiation, which do not readily account for the centriole or its properties. The viral envelope evolves into a sensory bud. The host cell supplies the transport machinery and molecular motors to construct the axoneme. Polymerization of cytoplasmic microtubules in the 9 + 0 axoneme completes the 9 + 2 pattern. Cell Motil. Cytoskeleton 2007. 2007 Wiley-Liss, Inc. [source]


    Discrete, Base-Free, Cationic Alkaline-Earth Complexes , Access and Catalytic Activity in the Polymerization of Lactide

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 22 2010
    Yann Sarazin
    Abstract Well-defined, base free cations of zinc and the alkaline-earth metals (Mg, Ca, Sr, Ba) supported by a multidentate phenolate ligand and stabilized by perfluorinated weakly coordinating counterions are readily available by simple procedures; the solid-state structures of the magnesium and calcium derivatives were elucidated. Upon treatment with an excess of iPrOH, these complexes generate highly efficient binary catalytic systems for the immortal ring-opening polymerization of L -lactide, yielding poly(L -lactide)s with controlled architectures and molecular features. [source]


    Aminopyridinate-Stabilized Lanthanoid Complexes: Synthesis, Structure and Polymerization of Ethylene and Isoprene

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 18 2010
    Christian Dring
    Abstract A series of aminopyridinate-stabilized dialkyl-lanthanoid complexes has been synthesized and characterized. The complexes were prepared by alkane elimination reacting [Ln(CH2SiMe3)3(thf)2] (Ln = Er, Yb, Lu) or [Ln(CH2Ph)3(thf)3] (Ln = Y, Er, Lu) with one equivalent of the bulky aminopyridine (2,6-diisopropylphenyl)-[6-(2,4,6-triisopropylphenyl)pyridin-2-yl]amine. Single-crystal X-ray analyses were carried out for all of the benzyl derivatives. The reaction of these compounds with ammonium borate leads to the elimination of one of the two alkyl functions and affords organolanthanoid cations. The aminopyridinate-stabilized dialkyl-lanthanoid compounds can initiate the polymerization of isoprene after activation with perfluorinated tetraphenyl borates. The obtained polymers have a 3,4-content of 60,95,%. The metal ion size as well as the addition of alkylaluminium compounds influences the microstructure of the obtained polymer. Aminopyridinate-stabilized organolanthanoid cations of Sc, Lu, Er and Y can polymerize ethylene in the presence of alkylaluminium compounds. The Lu, Er and Y complexes act as a CCTP catalyst and the erbium compound exhibits the highest activity. [source]


    A Family of 1,1,3,3-Tetraalkylguanidine (H-TAG) Solvated Zinc Aryloxide Precatalysts for the Ring-Opening Polymerization of rac -Lactide

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 9 2010
    Julia J. Ng
    Abstract Reaction of [Zn(,-TAG){N(SiMe3)2}]2 {TAG = N=C[N(CH2CH3)2N(CH3)2] (DEDMG), N=C{[NCH2CH2CH2CdH2(N,Cd)]N(CH2CH3)2} (DEPYRG) and N=C{[NCH2CH2CH2CH2CeH2(N,Ce)]N(CH2CH3)2} (DEPIPG)} with 2 equiv. of ethanol (EtOH) and 2 equiv. of HOAr {OAr = OC6H3(CMe3)-2-(CH3)-6 (BMP) or OC6H2[C(CH3)3]2 -2,6-(CH3)-4 (4MeDBP)} results in dizinc alkoxides with the general formula [Zn(,-OEt)(OAr)(H-TAG)]2 (1,3). Et2Zn was additionally treated with 2 equiv. of 1,1,3,3-tetramethylguanidine (H-TMG) and H-BMP or HOC6H3(C6H5)2 -2,6 to yield [Zn(BMP)2(H-TMG)2] (4) and [Zn{OC6H3(C6H5)2 -2,6}2(H-TMG)2] (5). Complexes 1, 2, 4, and 5 were characterized by single-crystal X-ray diffraction. Polymerization of rac -lactide with 1,5 and [Zn(,-OMe)(4MeDBP)(H-TMG)]2 (6) were found to generate polylactide (PLA). The bulk powders for all complexes were found to be in agreement with the crystal structures based on elemental analyses, FTIR spectroscopy, and 1H and 13C NMR spectroscopic studies. [source]


    O -Acylated 2-Phosphanylphenol Derivatives , Useful Ligands in the Nickel-Catalyzed Polymerization of Ethylene

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 9 2009
    Dmitry G. Yakhvarov
    Abstract The title ligands were prepared by O -acylation of 2-diphenylphosphanyl-4-methylphenol (1) or directly by double lithiation of 2-bromo-4-methylphenol and stepwise coupling with ClPPh2 and ClP(O)Ph2 or RC(O)Cl (R = Me, tBu, Ph, 4-MeOC6H4) to afford diphenylphosphinate 2 and carboxylic esters 3a,d. X-ray crystal structure analyses of 3b,d show conformations in which the P -phenyl substituents are rotated away from the ester group and the C(O)O , planes are nearly perpendicular to the phenol ring , plane. O -Acylated phosphanylphenols 2 and 3a,d form highly active catalysts with Ni(1,5-cod)2 (as does 1) for polymerization of ethylene, whereas phosphanylphenyl ethers do not give catalysts under the same conditions. The reason is the cleavage of the O -acyl bond upon heating with nickel(0) precursor compounds in the presence of ethylene. The precursors are P-coordinated Ni0 complexes, which are formed at room temperature, such as 4d obtained from 3d and Ni(cod)2 (in a 2:1 molar ratio), and characterized by multinuclear NMR spectroscopy. Upon heating in the presence of ethylene, the precatalysts are activated. Catalysts 2Ni and 3a,dNi convert ethylene nearly quantitatively, 2Ni slowly, and 3a,dNi rapidly, into linear polyethylene with vinyl and methyl end groups, and in the latter case, C(O)R end groups are also detectable. This proves insertion of Ni0 into the O,C(O)R bond of 3a,d ligands for formation of the primary catalyst. Termination of the first chain growing cycle by ,-hydride elimination changes the mechanism to the phosphanylphenolate,NiH initiated polymerization providing the main body of the polymer. A small retardation in the ethylene consumption rate with 3a,dNi catalysts relative to that observed for 1Ni and stabilization of the catalyst, which gives rise to reproducibly high ethylene conversion, is observed. ( Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


    Scandium-Catalyzed Polymerization of CH3(CH2)nCH=CH2 (n = 0,4): Remarkable Activity and Tacticity Control

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 7 2009
    Benjamin D. Ward
    Abstract The C3 -symmetric trisoxazoline-supported scandium complex [Sc(iPr-trisox)(CH2SiMe3)3] (2) is highly active in the stereospecific polymerization of propene, 1-butene, 1-pentene, 1-hexene and 1-heptene, when activated with two equivalents of [Ph3C][B(C6F5)4]. The polymers thus produced were found to possess narrow molecular weight distributions and high levels of tacticity control (up to 99,% mmmm). Some insight into the nature of the active species was obtained by 1H, 13C and 29Si NMR experiments. In particular, the formation of two equivalents of Ph3CCH2SiMe3 at ambient temperature was observed alongside a C3 -symmetric scandium complex tentatively assigned as the dication [Sc(iPr-trisox)(CH2SiMe3)]2+.( Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


    Pyridine Carboxylate Complexes of MoII as Active Catalysts in Homogeneous and Heterogeneous Polymerization

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 18 2007
    Maria Vasconcellos-Dias
    Abstract New lamellar materials intercalated with molybdenum(II) complexes with potential catalytic properties were prepared by a stepwise procedure. The lamellar material was first calcined at 823 K for four hours to eliminate all the carbonate ions; the layered structure was reconstructed after treatment with a solution of either pycH (pyridine-2-carboxylic acid) or pydcH2 (pyridine-2,6-dicarboxylic acid) in a KOH solution of dmf at 343 K. Impregnation with a solution of the organometallic precursor [Mo(CO)3I2(NCCH3)2] led to substitution of the nitrile groups by two pyridine ligands. All the materials were characterized by powder X-ray diffraction, FTIR, and 13C CP MAS and 27Al MAS solid-state NMR spectroscopy. Similar MoII complexes were also prepared by using pycH or pydcH2 and characterized by elemental analysis as well as FTIR and 1H and 13C solution NMR spectroscopy. These new materials and the complexes of pyc or pydc ligands containing 4.54 wt.-% and 6.33 wt.-% of Mo respectively, catalyze the ring-opening-metathesis polymerization of norbornene and the polymerization of styrene at 333 K, their performance increasing upon the addition of methylalumoxane (MAO) as cocatalyst.( Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source]


    First Example of a Gold(I) N -Heterocyclic-Carbene-Based Initiator for the Bulk Ring-Opening Polymerization of L -Lactide

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 18 2006
    Lipika Ray
    Abstract Synthesis, structure, and catalysis studies of two Au- and Ag-based initiators, namely, [3-(N - tert -butylacetamido)-1-(2-hydroxycyclohexyl)imidazol-2-ylidene]AuCl (1c) and [3-(N - tert -butylacetamido)-1-(2-hydroxycyclohexyl)imidazol-2-ylidene]AgCl (1b), for the bulk ring-opening polymerization of L -lactide are reported. Specifically, gold complex 1c was obtained from silver complex 1b by the transmetalation reaction with (SMe2)AuCl. Silver complex 1b was synthesized by the treatment of 3-(N - tert -butylacetamido)-1-(2-hydroxycyclohexyl)imidazolium chloride (1a) with Ag2O. Compound 1a was synthesized directly from the reaction of N - tert -butyl-2-chloroacetamide, cyclohexene oxide, and imidazole. The molecular structures of 1a, 1b, and 1c have been determined by X-ray diffraction studies. The formation of neutral monomeric complexes with linear geometries at the metal centers was observed for both 1b and 1c. The Au and Ag complexes 1c and 1b successfully catalyzed the bulk ring-opening polymerization of L -lactide at elevated temperatures under solvent-free melt conditions to produce moderate to low molecular weight polylactide polymers with narrow molecular weight distributions. ( Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source]


    Synthesis and Characterization of MoOI2(PMe3)3 and Use of MoOX2(PMe3)3 (X = Cl, I) in Controlled Radical Polymerization

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 13 2006
    Jos A. Mata
    Abstract Complex MoOCl2(PMe3)3 smoothly reacts with NaI in acetone to produce MoOI2(PMe3)3 in good yields. The geometry of the compound is mer - cis octahedral, that is, identical to that of the dichloride precursor, as shown by NMR spectroscopy and by an X-ray crystallographic study. Electrochemical investigations of MoOX2(PMe3)3 show irreversible oxidation waves at Ep,a = +0.18 and +0.39 V for X = Cl and I, respectively. A study of the halide exchange between MoOCl2(PMe3)3 and NaI, or between MoOI2(PMe3)3 and Bu4NCl, shows two equilibrated isomers for the mixed halide intermediate MoOICl(PMe3)3. The diiodide complex rapidly exchanges the iodo ligands with chloride upon dissolution in chloroform at room temperature, and with bromide from (1-bromoethyl)benzene (BEB) under more forcing conditions. The equilibrium favors the softer halide (I) on C and the harder one (Cl or Br) on MoIV. Both oxido compounds catalyze the atom transfer radical polymerization (ATRP) of styrene in combination with the BEB initiator, yielding polymers with quite narrow molecular weight distributions (down to 1.11). The apparent polymerization rate constant is approximately doubled in the presence of 1 equiv. of the Al(OiPr)3 cocatalyst. On the other hand, the system is not capable of efficiently controlling the radical chain growth for methyl acrylate polymerization. ( Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2006) [source]


    Stable Nickel Catalysts for Fast Norbornene Polymerization: Tuning Reactivity

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 19 2005
    Juan A. Casares
    Abstract The air-stable complexes trans -[Ni(C6Cl2F3)2L2] (L = SbPh3, 1; AsPh3, 2; AsCyPh2, 3; AsMePh2, 4; PPh3, 5) have been synthesized by arylation of [NiBr2(dme)] (dme = 1,2-dimethoxyethane) in the presence of the corresponding ligand L (for compounds 1,4) or by ligand substitution starting from 1 (for compound 5). The structures of 1, 2, and 5 have been determined by X-ray diffraction and show an almost perfect square-planar geometry in all cases. Their catalytic activity in insertion polymerization of norbornene have been tested showing a strong dependence of the yield and molecular mass of the polymer on the ligand used and the solvent. High yield and high molecular mass values are obtained using complexes with ligands easy to displace from NiII (SbPh3 is the best) and noncoordinating solvents. Complexes 1,3 are suggested as convenient bench-catalysts to have available in the lab. ( Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


    Preparation of Diamidochloro(cyclopentadienyl)titanium Derivatives as Pre-Catalysts for Olefin Polymerization , X-ray Molecular Structure of [Ti(,5 -C5H5){1,2-C6H4(NCH2CH2CH3)2}Cl] and [Ti{,5 -C5H4(SiMe3)}{1,2-C6H4(NCH2CH2CH3)2}Cl]

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 15 2004
    Vanessa Tabernero
    Abstract The synthesis of N,N,-alkyl 1,2-phenylenediamines 1,2-C6H4(NHR)2 [R = CH2CH2CH3 (nPr), CH2tBu (Np)] was carried out in three steps by lithiation of the primary 1,2-phenylenediamine, reaction with the appropriate acyl chloride and reduction with LiAlH4. The addition of nBuLi to a stirred solution of N,N,-alkyl diamines in cold hexane resulted in the immediate deposition of the corresponding lithium salts, which react with [MCpR,Cl3] to give the diamidochloro(,5 -cyclopentadienyl)titanium and -zirconium complexes [MCpR,{1,2-C6H4(NR)2}Cl] (4,10) [M = Ti, Zr; CpR, = ,5 -C5H5, ,5 -C5(CH3)5, ,5 -C5H4(SiMe3); R = nPr, Np]. The compound [Ti(,5 -C5H5){1,2-C6H4(NnPr)2}Cl] (3) was obtained by treatment of [Ti(,5 -C5H5)Cl3] with 1,2-C6H4(NHnPr)2 in the presence of NEt3 in toluene. All the reported compounds were characterized by the usual analytical and NMR spectroscopic methods. The molecular structures of 3 and 7 were determined by single-crystal X-ray crystallography. The compounds described here were further investigated as potential olefin polymerization catalysts. ( Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]


    Iminohydroxamato Early and Late Transition Metal Halide Complexes , New Precatalysts for Aluminoxane-Cocatalyzed Olefin Insertion Polymerization

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 8 2004
    Alexander Krajete
    Abstract We report on new families of non-metallocene metal precatalysts for olefin polymerization with titanium, zirconium, vanadium and nickel as the active metal sites. The novel ligand design concept is based on iminohydroxamic acids and their derivatives as the principal chelating units. Various anionic and neutral [N,O] and [N,N] ligand systems are easily accessible by a modular synthetic sequence of imidoyl chlorides with substituted hydroxylamines or hydrazines, respectively. Steric protection of the metal coordination site, a necessary requirement for suppression of chain termination pathways of non-metallocene catalysts, is brought about by bulky aryl substituents on the imino nitrogen atoms. Crystal structures of some of the hydroxamato ligands reveal interesting intermolecular hydrogen-bridged structures, whereas in the solid-state structure of one titanium precatalyst a five-membered chelate was observed, in line with the design principle of these systems. Preliminary ethylene polymerization studies with methylaluminoxane-activated metal complexes (M = Ti, Zr, V, Ni) show that the most active systems are [N,O]NiBr2 catalysts containing neutral O -alkyl iminohydroxamate ligands. ( Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]


    Extended X-ray Absorption Fine Structure Study of Copper(I) and Copper(II) Complexes in Atom Transfer Radical Polymerization

    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 11 2003
    Tomislav Pintauer
    Abstract Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy has been used to investigate structural features of CuIBr and CuIIBr2 complexes with dNbpy, PMDETA, Me6TREN, tNtpy, and Me4CYCLAM in various solvents {dNbpy = 4,4,-bis(5-nonyl)-2,2,-bipyridine, PMDETA = N,N,N,,N,,,N,, -pentamethyldiethylenetriamine, Me6TREN = tris[2-(dimethylamino)ethyl]amine, tNtpy = 4,4,,4,,-tris(5-nonyl)-2,2,:6,,2,,-terpyridine, Me4CYCLAM = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane}. The structures of the CuI and CuII complexes were found to depend on the solvent polarity and the number of nitrogen atoms in the ligand. Generally, in non-polar media and with monomers typically used in ATRP, CuI complexes preferred a tetracoordinate geometry, and were either ionic as observed in [CuI(dNbpy)2]+[CuIBr2], (CuI,NAV = 2.00 , CuI,BrAV = 2.25 ) and [CuI(Me4CYCLAM)]+[CuIBr2], (CuI,NAV = 2.06 , CuI,BrAV = 2.23 ), or neutral as in [CuI(PMDETA)Br] (CuI,NAV = 2.12 , CuI,BrAV = 2.33 ), and [CuI(tNtpy)Br] (CuI,NAV = 2.03 , CuI,BrAV = 2.29 ). The EXAFS analysis of CuIIBr2 complexes indicated a preference for a coordination number of five, such as in [CuII(dNbpy)2Br]+[Br], (CuII,NAV = 2.03 , CuII,BrAV = 2.43 ), [CuII(PMDETA)Br2] (CuII,NAV = 2.03 , CuII,Br1,AV = 2.44 , CuII,Br2,AV = 2.64 ) and [CuII(Me6TREN)Br]+[Br], (CuII,NAV = 2.09 , CuII -BrAV = 2.39 ), with the exception of the neutral tetracoordinate [CuII(dNbpy)Br2] (CuII,NAV = 2.02 , CuII,BrAV = 2.36 ), which has been observed in non-polar media. Additionally, polar media were found to favor bromide dissociation in [CuII(Me6TREN)Br]+[Br], and [CuII(PMDETA)Br2], as indicated by a decrease in the Br and Cu coordination numbers at the Cu- and Br- K -edges, respectively. ( Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2003) [source]


    The Extraordinary Cocatalytic Action of Polymethylaluminoxane (MAO) in the Polymerization of Terminal Olefins by Metallocenes: Chemical Change in the Group 4 Metallocene Dimethyl Derivatives Induced by MAO,

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 20 2005
    John J. Eisch
    Abstract In the polymerization of olefins with Group 4 metallocene dichlorides or dimethyl derivatives as procatalysts the use of polymethylaluminoxane (MAO) as the cocatalyst, especially in extreme excess (102,103 times the metallocene equivalent), has been shown to have an extraordinary accelerating effect on the rate of olefin polymerization, when compared with the cocatalytic action of alkylaluminum halides. In attempts at explaining the greatly superior catalytic activity of MAO in olefin polymerization (the MAO conundrum), hypotheses have generally paralleled the steps involved in the cocatalytic action of RnAlCl3,n, namely the alkylation of Cp2MtCl2, ionization of Cp2Mt(R)Cl into the metallocenium cation, [Cp2Mt,R]+, and anion, [Rn,1AlCl4,n], and subsequent ion-pair separation. In order to understand any differences in catalytic action between such cocatalysts, we have studied the individual action of MAO (100 equiv.) and of MeAlCl2 (1,2 equiv.) on each of the Group 4 metallocene derivatives, Cp2TiCl2, Cp2ZrCl2, Cp2Ti(CH3)2 and Cp2Zr(CH3)2. With MeAlCl2 each of the metallocene derivatives appeared to form the cation, [Cp2Mt,CH3]+, with greater (Ti) or lesser (Zr) ease, because an alkyne such as diphenylacetylene was then found to insert into the Mt,CH3 bond stereoselectively. In striking contrast, treatment of each metallocene with MAO gave two reactions very different from MeAlCl2, namely a steady evolution of methane gas upon mixing and a finding upon hydrolytic workup that the diphenylacetylene present had undergone no insertion into the Mt,CH3 bond but instead had been reductively dimerized completely to (E,E)-1,2,3,4-tetraphenyl-1,3-butadiene. To account for this astonishing difference in chemical behavior between MAO and MeAlCl2 in their cocatalytic activation of Group 4 metallocenes to olefin polymerization, it is necessary to postulate a novel, unique sequence of reaction steps occurring between MAO and the metallocene. If one starts with the metallocene dichloride, then the free TMA present in the MAO would generate the Cp2Mt(CH3)2. This metallocene dimethyl derivative, complexed with an oligomeric MAO unit, would undergo a transfer-epimetallation with added olefin or acetylene to form a metallacyclopropane or metallacyclopropene, respectively. With added diphenylacetylene the resulting 2,3-diphenylmetallacyclopropene would be expected rapidly to insert a second alkyne to form the 2,3,4,5-tetraphenyl-1-metallacyclopentadiene. Simple hydrolysis of the latter intermediate would generate (E,E)-1,2,3,4-tetraphenyl-1,3-butadiene while alternative workup with D2O would give the 1,4-dideuterio derivative of this butadiene. Both such expectations were confirmed by experiment. In the case of added olefin, similar metallacyclopropane and metallacyclopentane intermediates should be produced until ring opening of the latter five-membered ring leads to an open-chain zwitterion, a process having ample precedent in the research of Gerhard Erker. The solution to the MAO conundrum then, namely the extraordinary cocatalytic activity of MAO in olefin polymerization by metallocenes, lies in the unique catalytic activation of the Group 4 metallocene dimethyl derivative, which occurs by transfer-epimetallation of the olefin monomer by the Cp2Mt(CH3)2,MAO complex. The most advantageous Lewis acidic sites in the MAO,oligomeric mixture for such metallocene,MAO complexation are suggested to be terminal Me2Al,O,AlMe, segments of an open-chain oligomer. ( Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


    The Synthesis and Reactivity of Group 4 Zwitterionic Complexes of the Type Mt+CH2AlCl3,: One-Component Stereoselective Polymerization and Oligomerization Catalysts for Olefins and Acetylenes

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 15 2004
    John J. Eisch
    Abstract A reinvestigation of the interaction of TiCl4 with 2 equiv. of Me3Al in toluene between ,78 C and 25 C over 24 h has now established that the ultimate black product obtained is an associated zwitterion of the type [Ti+,CH2,AlCl3,]n, supported by multinuclear NMR spectroscopy and mass spectrometric and gasometric analyses of the gases evolved (CH4, H2) upon its protolysis. Chemical reactions of the zwitterion have corroborated specific aspects of its proposed structure: 1) its methylene character, by its transformation of benzophenone into 1,1-diphenylethylene; 2) its divalent titanium content, by the substantial reductive dimerization of benzophenone to tetraphenylethylene, and 3) its Lewis acidic Ti center, by its catalytic isomerization of trans -stilbene oxide to 1,1-diphenylacetaldehyde. Similar individual reactions of ZrCl4 or HfCl4 with Me3Al have led to the analogous zwitterions [Zr+,CH2,AlCl3,]n and [Hf+,CH2,AlCl3,]n, respectively. These zwitterions of Ti, Zr and Hf have been proven to be capable of the cyclotrimerization and/or polymerization of acetylenes with varying facility, as evidenced by their catalytic action on 1-hexyne, phenylacetylene, di- n -butylacetylene, and diphenylacetylene. Furthermore, all three zwitterions were able to polymerize ethylene, without any added cocatalyst, with an activity following the order Zr > Ti > Hf. The Ti and Zr zwitterions effected the stereoselective polymerization of propylene to yield 50% of isotactic polymer, and all three catalysts induced the polymerization of 1-hexene to yield 85% (Zr, Hf) or 100% (Ti) of isotactic polymer. These oligomerizations and stereoselective polymerizations of acetylenes and olefins can be rationalized through a model for the active site resembling a three-membered metallacyclopropa(e)nium ion intermediate formed from the attack of the Group 4 metal zwitterion on the unsaturated hydrocarbon. ( Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004) [source]


    Fabrication of Periodic Microstructures in Pentaerythritol Triacrylate Through Femtosecond Laser Interference Two-Photon Polymerization,

    ADVANCED ENGINEERING MATERIALS, Issue 7 2009
    Andrs Lasagni
    Fabrication of periodic, two-dimensional microstructures in pentaerythritol triacrylate (PETIA) is demonstrated through femtosecond laser interference patterning. Planar arrayed structures of different periodicities and geometries were fabricated using three, four, and five interfering beams from an 800,nm ultrafast femtosecond laser. The periodic topography can be varied from isolated conical pillars to interconnected cellular structures by simple control of the interference pattern in combination with energy dose. [source]


    Functionalization of Chitosan via Atom Transfer Radical Polymerization for Gene Delivery

    ADVANCED FUNCTIONAL MATERIALS, Issue 18 2010
    Yuan Ping
    Abstract It is of crucial importance to modify chitosan-based polysaccharides in the designing of biomedical materials. In this work, atom transfer radical polymerization (ATRP) was employed to functionalize chitosan in a well-controlled manner. A series of new degradable cationic polymers (termed as PDCS) composed of biocompatible chitosan backbones and poly((2-dimethyl amino)ethyl methacrylate) (P(DMAEMA)) side chains of different length were designed as highly efficient gene vectors via ATRP. These vectors, termed as PDCS, exhibited good ability to condense plasmid DNA (pDNA) into nanoparticles with positive charge at nitrogen/phosphorus (N/P) ratios of 4 or higher. All PDCS vectors could well protect the condensed DNA from enzymatic degradation by DNase I and they displayed high level of transfectivity in both COS7, HEK293 and HepG2 cell lines. Most importantly, in comparison with high-molecular-weight P(DMAEMA) and ,gold-standard' PEI (25 kDa), the PDCS vectors showed considerable buffering capacity in the pH range of 7.4 to 5, and were capable of mediating much more efficient gene transfection at low N/P ratios. At their own optimal N/P ratios for trasnsfection, the PDCS/pDNA complexes showed much lower cytotoxicity. All the PDCS vectors were readily to be degradable in the presence of lysozyme at physiological conditions in vitro. These well-defined PDCS polymers have great potentials as efficient gene vectors in future gene therapy. [source]


    Metal-Free Alkyne Polyhydrothiolation: Synthesis of Functional Poly(vinylenesulfide)s with High Stereoregularity by Regioselective Thioclick Polymerization

    ADVANCED FUNCTIONAL MATERIALS, Issue 8 2010
    Cathy K. W. Jim
    Abstract A new synthetic route to sulfur-rich polymers has been developed. The alkyne polyhydrothiolations of 4,4,-thiodibenzenethiol (1) and arylene dipropiolates (2,5) mediated by amines proceed at room temperature in a regioselective fashion, furnishing sole anti-Markovnikov products of poly(vinylenesulfide)s (P1/2,P1/5) with high molecular weights (Mw up to 32 300) and high stereoregularities (Z content up to 81.4%) in high yields (up to 98.2%). Polymers P1/2,P1/4 are soluble in common organic solvents. They are optically transparent, allowing almost all visible and IR light to transmit through. Thanks to the high sulfur contents of the polymers, their films show high refractive indices (n,=,1.73,1.70) in the wavelength region of 500,1700 nm as well as high Abb numbers (,D' up to 539) and low optical dispersions (D' down to 0.002) at wavelengths important for telecommunications. Their refractivities can be further enhanced (n up to 2.06) by metal complexation and their films can be crosslinked by UV irradiation, which enables ready fabrication of fluorescent photopatterns. [source]


    Low-Distortion Holographic Data Storage Media Using Free-Radical Ring-Opening Polymerization

    ADVANCED FUNCTIONAL MATERIALS, Issue 22 2009
    Kyongsik Choi
    Abstract Holographic data storage, due to its potential to increase capacity beyond one terabyte per disk, is tipped to be one of the next generation optical data storage technologies. Polymer-based systems are leading candidates due to their high dynamic range, high sensitivities, and flexible and easy production, and yet polymerization-shrinkage-induced distortion is a major hurdle for its reliable use. In this paper, a new free radical polymerization holographic recording medium, based on low shrink cyclic allylic sulfides (LS-CASs) ring-opening monomers, is proposed and demonstrated. The percentage of volume shrinkage is measured to be 0.02%, with refractive index (RI) contrast of (1.01,,0.5),,10,3. The measured volume shrinkage is, to the authors' best knowledge, the best reported so far in the literature. Other parameters such as sensitivity, dynamic range, and dark reaction properties are also measured, where the values can be optimized with high RI functional groups without sacrificing the low shrinkage. [source]


    Metal-Free Click Polymerization: Synthesis and Photonic Properties of Poly(aroyltriazole)s

    ADVANCED FUNCTIONAL MATERIALS, Issue 12 2009
    Anjun Qin
    Abstract Regioselective 1,3-dipolar polycycloadditions of tetraphenylethene (TPE)-containing diazides 1,3 and bis(aroylacetylene) 4 are initiated by simple heating, affording poly(aroyltriazole)s (PATAs) PI,PIII with high molecular weights in high yields. The PATAs are completely soluble in common organic solvents and stable at temperatures up to 358,C. Thanks to their TPE units, the polymers show aggregation-induced emission and work as explosive sensors with high sensitivity. The PATAs are optically transparent in the whole visible spectral region. Their refractive indexes can be tuned to a great extent (,n,,,0.08) by simply changing their alkyl spacer lengths. The modified Abb numbers of the PATAs are very high (up to 273), indicative of very low optical dispersions in the telecommunication-important wavelength region. UV irradiation through a photomask quenches the light emissions of the polymers, enabling the generation of two-dimensional fluorescent images without development. The polymers can be readily photo-crosslinked, yielding three-dimensional patterns with high resolutions. [source]


    Organic Thin Film Transistors with Polymer Brush Gate Dielectrics Synthesized by Atom Transfer Radical Polymerization

    ADVANCED FUNCTIONAL MATERIALS, Issue 1 2008
    C. Pinto
    Abstract Low operating voltage is an important requirement that must be met for industrial adoption of organic field-effect transistors (OFETs). We report here solution fabricated polymer brush gate insulators with good uniformity, low surface roughness and high capacitance. These ultra thin polymer films, synthesized by atom transfer radical polymerization (ATRP), were used to fabricate low voltage OFETs with both evaporated pentacene and solution deposited poly(3-hexylthiophene). The semiconductor-dielectric interfaces in these systems were studied with a variety of methods including scanning force microscopy, grazing incidence X-ray diffraction and neutron reflectometry. These studies highlighted key differences between the surfaces of brush and spun cast polymethyl methacrylate (PMMA) films. [source]


    Thin Films of Insoluble Poly(Oligothienylene vinylenes) Prepared by Chemical Vapor Deposition Polymerization,

    ADVANCED FUNCTIONAL MATERIALS, Issue 13 2007
    S.-H. Joo
    Abstract A series of poly(oligothienylene vinylenes) (PTmVs, m,=,2,4) with a varying number of consecutively bound thienylene rings are successfully prepared in thin films by chemical vapor deposition polymerization (CVDP) using the corresponding bis(halomethyl)thiophenes as starting materials. The chemical and electronic structures are studied spectroscopically and also by cyclic voltammetry. Top-gate field-effect transistors are fabricated by two consecutive CVDP cycles of PTmV and poly(p -xylylene) followed by the deposition of a Au gate electrode. In the case of a PT3V active layer, a field-effect mobility value of 0.5,,10,4,cm2,V,1,s,1 is obtained. [source]


    CdS-Nanoparticle/Polymer Composite Shells Grown on Silica Nanospheres by Atom-Transfer Radical Polymerization,

    ADVANCED FUNCTIONAL MATERIALS, Issue 3 2005
    T. Cui
    Abstract In this paper we describe the combined use of surface-initiated atom transfer radical polymerization (ATRP) and a gas/solid reaction in the direct preparation of CdS-nanoparticle/block-copolymer composite shells on silica nanospheres. The block copolymer, consisting of poly(cadmium dimethacrylate) (PCDMA) and poly(methyl methacrylate) (PMMA), is obtained by repeatedly performing the surface-initiated ATRP procedures in N,N -dimethylformamide (DMF) solution at room temperature, using cadmium dimethacrylate (CDMA) and methyl methacrylate (MMA) as the monomers. CdS nanoparticles with an average size of about 3,nm are generated in situ by exposing the silica nanospheres coated with block-copolymer shells to H2S gas. These synthetic core,shell nanospheres were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), diffuse reflectance UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD). These composite nanospheres exhibit strong red photoluminescence in the solid state at room temperature. [source]


    Ab initio Emulsion Polymerization by RAFT (Reversible Addition,Fragmentation Chain Transfer) through the Addition of Cyclodextrins

    HELVETICA CHIMICA ACTA, Issue 8 2006
    Bojana Apostolovic
    Abstract A novel process to produce homo- and copolymers by RAFT polymerization in emulsion is presented. It is known that RAFT-controlled radical polymerization can be conducted in emulsion polymerization without disturbing the radical segregation characteristic of this process, thus leading to polymerization rates identical to those encountered in the corresponding nonliving systems. However, RAFT agents are often characterized by very low water solubility and, therefore, they diffuse very slowly from the monomer droplets, where they are initially solubilized, to the reaction loci, i.e., the polymer particles. Accordingly, when used in emulsion polymerization, they are practically excluded from the reaction. In this work, we show that cyclodextrins, well-known for their ability to form water-soluble complexes with hydrophobic molecules, facilitate the transport across the H2O phase of the RAFT agent to the polymer particles. Accordingly, chains grow through the entire process in a controlled way. This leads to the production of low-polydispersity polymers with well-defined structure and end functionalities as well as to the possibility of synthesizing block copolymers by a radical mechanism. [source]


    Photosensitive Nanocomposites: Highly Non-Linear Quantum Dot Doped Nanocomposites for Functional Three-Dimensional Structures Generated by Two-Photon Polymerization (Adv. Mater.

    ADVANCED MATERIALS, Issue 22 2010
    22/2010)
    Baohua Jia, Min Gu, and co-workers report on p.,2463 on novel quantum dot functionalized photosensitive nanocomposites showing ultrahigh third-order nonlinearity. The cover image shows functional three-dimensional micronano photonic structures, for example, photonic crystals can be fabricated in such active nanocomposites using the versatile two-photon poly-merisation method, opening various possibilities in active micro/nano devices, such as ultrafast switching, signal regeneration, and high speed demultiplexing systems. [source]


    Highly Non-Linear Quantum Dot Doped Nanocomposites for Functional Three-Dimensional Structures Generated by Two-Photon Polymerization

    ADVANCED MATERIALS, Issue 22 2010
    Baohua Jia
    A nanocomposite consisting of a photosensitive organic,inorganic hybrid polymer functionalized with PbS quantum dots has been developed using a sol,gel process. The uniformly dispersed nanocomposite exhibits ultrahigh third-order non-linearity (,3.2,,10,12 cm2 W,1) because of the strong quantum confinement of small-sized and narrowly distributed quantum dots. The non-linear nanocomposite has been proven to be suitable for the fabrication of 3D micro/nano photonic devices using two-photon polymerization. The fabricated photonic crystals show stop gaps with more than 60% suppression in transmission at the telecommunications wavelength region. [source]


    Synthesis of Half-Channels by the Anionic Polymerization of Ethylene Oxide Initiated by Modified Cyclodextrin

    ADVANCED MATERIALS, Issue 40 2009
    Nezha Badi
    Amphiphilic star-shaped oligomers are produced by anionic polymerization of ethylene oxide (EO) using per-2,3-di- O -heptyl- , -(or ,)cyclodextrins as initiators , a versatile way of synthesizing artificial channels bearing one polyEO branch per glucose unit. The behavior of the amphiphilic molecules in lipid membranes is studied by electrical measurements, which confirms the formation of transient, well-defined dimeric ionic channels (see figure). [source]


    Nanostructured Organic,Inorganic Composite Materials by Twin Polymerization of Hybrid Monomers

    ADVANCED MATERIALS, Issue 20 2009
    Stefan Spange
    Abstract Forming two structurally different but associated polymer structures in a single step is a possible route for the production of nanostructured materials. By means of twin polymerization of specially constructed monomers consisting of two different covalently bonded building blocks (hybrid monomers), this route is realized. What is important is that two different macromolecular structures are formed from one monomer in a single process. The two polymers formed can be linear, branched, or cross-linked structures. The molecular composition of the hybrid monomer defines the degree of cross-linking of the corresponding macromolecular structures that is theoretically possible. [source]


    Organic LEDs: The Simple Way to Solution-Processed Multilayer OLEDs , Layered Block-Copolymer Networks by Living Cationic Polymerization (Adv. Mater.

    ADVANCED MATERIALS, Issue 8 2009
    8/2009)
    A novel strategy for simple, intelligent, and cost-effective fabrication of multilayer OLEDs by solution-processing is demonstrated by Klaus Meerholz and co-workers on p. 879. The cover shows the self-smoothing of thin polymer films using this method, termed "layer-by-layer crosslinking" (LBLX). LBLX enables the crosslinking and smoothing of several polymer layers on top of each other simply by using a heat and wash procedure. [source]