Home About us Contact | |||
Polymer Leads (polymer + lead)
Selected AbstractsA Versatile, Molecular Engineering Approach to Simultaneously Enhanced, Multifunctional Carbon-Nanotube, Polymer Composites,ADVANCED FUNCTIONAL MATERIALS, Issue 1 2006J. Chen Abstract Single-walled carbon nanotubes (SWNTs) are recognized as the ultimate carbon fibers for high-performance, multifunctional composites. The remarkable multifunctional properties of pristine SWNTs have proven, however, difficult to harness simultaneously in polymer composites, a problem that arises largely because of the smooth surface of the carbon nanotubes (i.e., sidewalls), which is incompatible with most solvents and polymers, and leads to a poor dispersion of SWNTs in polymer matrices, and weak SWNT,polymer adhesion. Although covalently functionalized carbon nanotubes are excellent reinforcements for mechanically strong composites, they are usually less attractive fillers for multifunctional composites, because the covalent functionalization of nanotube sidewalls can considerably alter, or even destroy, the nanotubes' desirable intrinsic properties. We report for the first time that the molecular engineering of the interface between non-covalently functionalized SWNTs and the surrounding polymer matrix is crucial for achieving the dramatic and simultaneous enhancement in mechanical and electrical properties of SWNT,polymer composites. We demonstrate that the molecularly designed interface of SWNT,matrix polymer leads to multifunctional SWNT,polymer composite films stronger than pure aluminum, but with only half the density of aluminum, while concurrently providing electroconductivity and room-temperature solution processability. [source] The Effect of Polymer Optoelectronic Properties on the Performance of Multilayer Hybrid Polymer/TiO2 Solar CellsADVANCED FUNCTIONAL MATERIALS, Issue 4 2005P. Ravirajan Abstract We report a study of the effects of polymer optoelectronic properties on the performance of photovoltaic devices consisting of nanocrystalline TiO2 and a conjugated polymer. Three different poly(2-methoxy-5-(2,-ethylhexoxy)-1,4-phenylenevinylene) (MEH-PPV)-based polymers and a fluorene,bithiophene copolymer are compared. We use photoluminescence quenching, time-of-flight mobility measurements, and optical spectroscopy to characterize the exciton-transport, charge-transport, and light-harvesting properties, respectively, of the polymers, and correlate these material properties with photovoltaic-device performance. We find that photocurrent is primarily limited by the photogeneration rate and by the quality of the interfaces, rather than by hole transport in the polymer. We have also studied the photovoltaic performance of these TiO2/polymer devices as a function of the fabrication route and device design. Including a dip-coating step before spin-coating the polymer leads to excellent polymer penetration into highly structured TiO2 networks, as was confirmed through transient optical measurements of the photoinduced charge-transfer yield and recombination kinetics. Device performance is further improved for all material combinations studied, by introducing a layer of poly(ethylene dioxythiophene) (PEDOT) doped with poly(styrene sulfonic acid) (PSS) under the top contact. Optimized devices incorporating the additional dip-coated and PEDOT:PSS layers produced a short-circuit current density of about 1,mA,cm,2, a fill factor of 0.50, and an open-circuit voltage of 0.86,V under simulated AM,1.5 illumination (100,mW,cm,2, 1,sun). The corresponding power conversion efficiency under 1,sun was ,,0.4,%. [source] Conducting-Polymer/Iron-Redox- Couple Composite Cathodes for Lithium Secondary Batteries,ADVANCED MATERIALS, Issue 6 2007K.-S. Park Physically or chemically attaching an FeIII/FeIIredox couple to the backbone of a conducting polymer leads to stabilization of the charge/discharge characteristics and higher electrode capacities. Composite cathodes made from LiFePO4 particles bound to polypyrrole show enhanced electrode capacities and better rate capabilities, as shown in the figure. Chemically attaching ferrocene to the pyrrole backbone not only stabilizes the charge,discharge curves but also leads to higher capacity. [source] Spectroscopic Investigations of Polymer NanocompositesMACROMOLECULAR SYMPOSIA, Issue 1 2005Liliane Bokobza The addition of an inorganic component to polymers leads to improvements in various physical and mechanical properties. Various examples on filled elastomeric networks will show that a mechanical characterization can be nicely combined with a spectroscopic investigation for a better understanding of the properties of the composite materials. [source] |