Polymer Interaction (polymer + interaction)

Distribution by Scientific Domains


Selected Abstracts


Proteolytically Degradable Photo-Polymerized Hydrogels Made From PEG,Fibrinogen Adducts,

ADVANCED ENGINEERING MATERIALS, Issue 6 2010
Daniel Dikovsky
Abstract We develop a biomaterial based on protein,polymer conjugates where poly(ethylene glycol) (PEG) polymer chains are covalently linked to multiple thiols on denatured fibrinogen. We hypothesize that conjugation of large diacrylate-functionalized linear PEG chains to fibrinogen could govern the molecular architecture of the polymer network via a unique protein,polymer interaction. The hypothesis is explored using carefully designed shear rheometry and swelling experiments of the hydrogels and their precursor PEG/fibrinogen conjugate solutions. The physical properties of non-cross-linked and UV cross-linked PEGylated fibrinogen having PEG molecular weights ranging from 10 to 20,kDa are specifically investigated. Attaching multiple hydrophilic, functionalized PEG chains to the denatured fibrinogen solubilizes the denatured protein and enables a rapid free-radical polymerization cross-linking reaction in the hydrogel precursor solution. As expected, the conjugated protein-polymer macromolecular complexes act to mediate the interactions between radicals and unsaturated bonds during the free-radical polymerization reaction, when compared to control PEG hydrogels. Accordingly, the cross-linking kinetics and stiffness of the cross-linked hydrogel are highly influenced by the protein,polymer conjugate architecture and molecular entanglements arising from hydrophobic/hydrophilic interactions and steric hindrances. The proteolytic degradation products of the protein,polymer conjugates proves to be were different from those of the non-conjugated denatured protein degradation products, indicating that steric hindrances may alter the proteolytic susceptibility of the PEG,protein adduct. A more complete understanding of the molecular complexities associated with this type of protein-polymer conjugation can help to identify the full potential of a biomaterial that combines the advantages of synthetic polymers and bioactive proteins. [source]


Drug,polymer interaction and its significance on the physical stability of nifedipine amorphous dispersion in microparticles of an ammonio methacrylate copolymer and ethylcellulose binary blend

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 1 2008
Jingjun Huang
Abstract Using spectroscopic and thermal analysis, this study investigated drug,polymer interaction and its significance on the physical stability of drug amorphous dispersion in microparticles of an ammonio polymethacrylate copolymer (Eudragit RL®) (RL) and ethylcellulose (EC) binary blend (RL/EC,=,2:1 w/w) prepared for use in controlled release of poorly water-soluble drugs. Solid dispersion of the model drug, nifedipine in the microparticles could be described as an ideal amorphous mixture for drug loadings up to 11% w/w. The antiplasticizing effect of the polymer blend was indicated by a significant increase in the glass transition point from ,50°C for the amorphous nifedipine to ,115°C for its solid solution. Moreover, shifts in infrared vibration wavenumber of nifedipine carbonyl and amine groups suggested that the hydrogen bonds (H-bonds) originally formed among nifedipine molecules were broken and replaced by those formed between nifedipine and polymers in the microparticles. Further infrared analysis on nifedipine amorphous dispersions with a single polymer, namely RL or EC, confirmed the proposed hydrogen-bonding interactions; and their stability study results suggested that both antiplasticizing effects and hydrogen bonding of EC and RL with nifedipine might be responsible for the physical stability of the microparticles of nifedipine amorphous dispersion with a RL/EC binary blend. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:251,262, 2008 [source]


Relaxation behavior of conductive carbon black reinforced EPDM microcellular vulcanizates

POLYMER ENGINEERING & SCIENCE, Issue 7 2007
S.P. Mahapatra
Dynamic mechanical analysis and dielectric relaxation spectra of conductive carbon black reinforced microcellular EPDM vulcanizates were used to study the relaxation behavior as a function of temperature (,90 to +100°C) and frequency (0.01,105 Hz). The effect of filler and blowing agent loadings on dynamic mechanical and dielectric relaxation characteristics has been investigated. The effect of filler and blowing agent loadings on glass transition temperature was marginal for all the composites (Tg value was in the range of ,39 to ,35°C), which has been explained on the basis of relaxation dynamics of polymer chains in the vicinity of fillers. Strain-dependent dynamical parameters were evaluated at dynamic strain amplitudes of 0.07,5%. The nonlinearity in storage modulus has been explained based on the concept of filler,polymer interaction and interaggregate attraction (filler networking) of carbon black. The variation in real and complex part of impedance with frequency has been studied as a function of filler and blowing agent loading. Additionally, the effect of crosslinking on the dielectric relaxation has also been reported. POLYM. ENG. SCI., 47:984,995, 2007. © 2007 Society of Plastics Engineers [source]


Interaction between aqueous solutions of polymer and surfactant and its effect on physicochemical properties

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2008
Mohammad Yunus Khan
Abstract Interaction between water-soluble polymers and anionic surfactants has been studied by surface tension and conductivity measurements. Sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) were used as surfactant while polyacrylamide (PAA), commercial grade partially hydrolyzed polyacrylamide (PHPA), and xanthan gum were used as water-soluble polymers for the present study. The behavior of surfactant,polymer interaction was found to be dependent on both surfactant and polymer concentrations. After the critical aggregation concentration (CAC), interaction between the water-soluble polymer and surfactants was started and above the polymer saturation point (PSP) polymer was saturated by surfactant with no further change of surface tension and conductivity of the solution. It has also been found that alkali (NaOH) and salts (Na2CO3, NaCl) have significant influence on the polymer,surfactant interaction. Copyright © 2008 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Reaction of a peptide with polyvinylpyrrolidone in the solid state

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 3 2003
Ajit Joseph M. D'Souza
Abstract During stability studies at high temperature (70°C) and low relative humidity (,0%), the recovery of an asparagine containing hexapeptide (VYPNGA) and its known deamidation products from solid polyvinylpyrrolidone (PVP) matrices was incomplete. To determine the causes of this mass loss, formulations were prepared by lyophilizing solutions containing PVP, glycerol, and the Asn-hexapeptide in pH 7.5 phosphate buffer, followed by storage at 70°C and 0% relative humidity. Asn-hexapeptide loss was mono-exponential and reached a plateau at about 30% remaining. Total recovery of the peptide and its known deamidation products was ,30% of peptide load. Size exclusion chromatography with fluorescence detection indicated the formation of a PVP,peptide adduct that was stable in the presence of 6 M guanidine hydrochloride. Similar stability studies using N -acetyl phenylalanine, phenylalanine ethyl ester, and N -acetyl tyrosine ethyl ester demonstrated that the reaction involves the peptide N-terminus. The adduct was disrupted in the presence of carboxypeptidase-A, suggesting the formation of an amide bond between the peptide and PVP. 15N solid-state nuclear magnetic resonance spectroscopy using 15N-labeled valine as a model of the peptide N-terminus showed different populations of 15N, suggesting that noncovalent peptide,polymer interactions precede amide bond formation. © 2003 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 92:585,593, 2003 [source]


Colloids decrease clot propagation and strength: role of factor XIII-fibrin polymer and thrombin,fibrinogen interactions

ACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 8 2005
V. G. Nielsen
Colloid-mediated hypocoagulability is clinically important, but the mechanisms responsible for coagulopathy have been incompletely defined. Thus, my goal was to elucidate how colloids decrease plasma coagulation function. Plasma was diluted 0% or 40% with 0.9% NaCl, three different hydroxyethyl starches (HES, mean molecular weight 450, 220 or 130 kDa), or 5% human albumin. Samples (n = 6 per condition) were activated with celite, and diluted samples had either no additions or addition of fibrinogen (FI), thrombin (FIIa) or activated Factor XIII (FXIIIa) to restore protein function to prediluted values. Thrombelastographic variables measured included clot propagation (angle, ,), and clot strength (amplitude, A; or shear elastic modulus, G). Dilution with 0.9% NaCl significantly decreased ,, A and G -values compared to undiluted samples. Supplementation with FI, but not FIIa or FXIIIa, resulted in 0.9% NaCl-diluted thrombelastographic variable values not different from those of undiluted samples. FI supplementation of HES 450, HES 220, HES 130 and albumin-diluted samples only partially restored ,, A and G -values compared to undiluted samples. FIIa addition only improved clot propagation and strength in albumin-diluted samples. FXIIIa supplementation improved propagation in samples diluted with HES 450, HES 220 and albumin, and clot strength improved in HES 450 and albumin-diluted plasma. Considered as a whole, these data support compromise of FIIa-FI and FXIIIa , fibrin polymer interactions as the mechanisms by which colloids compromise plasma coagulation. Investigation to determine if clinical enhancement of FXIII activity and/or FI concentration (e.g. fresh-frozen plasma, cryoprecipitate) can attenuate colloid-mediated decreases in hemostasis is warranted. [source]