Polymer Core (polymer + core)

Distribution by Scientific Domains


Selected Abstracts


Preparation of High-Performance Conductive Polymer Fibers through Morphological Control of Networks Formed by Nanofillers

ADVANCED FUNCTIONAL MATERIALS, Issue 9 2010
Hua Deng
Abstract A general method is described to prepare high-performance conductive polymer fibers or tapes. In this method, bicomponent tapes/fibers containing two layers of conductive polymer composites (CPCs) filled with multiwall carbon nanotubes (MWNT) or carbon black (CB) based on a lower-melting-temperature polymer and an unfilled polymer core with higher melting temperature are fabricated by a melt-based process. Morphological control of the conductive network formed by nanofillers is realized by solid-state drawing and annealing. Information on the morphological and electrical change of the highly oriented conductive nanofiller network in CPC bicomponent tapes during relaxation, melting, and crystallization of the polymer matrix is reported for the first time. The conductivity of these polypropylene tapes can be as high as 275,S,m,1 with tensile strengths of around 500,MPa. To the best of the authors' knowledge, it is the most conductive, high-strength polymer fiber produced by melt-processing reported in literature, despite the fact that only ,5,wt.% of MWNTs are used in the outer layers of the tape and the overall MWNT content in the bicomponent tape can be much lower (typically ,0.5,wt.%). Their applications could include sensing, smart textiles, electrodes for flexible solar cells, and electromagnetic interference (EMI) shielding. Furthermore, a modeling approach was used to study the relaxation process of highly oriented conductive networks formed by carbon nanofillers. [source]


Chemical Nanosensors Based on Composite Molecularly Imprinted Polymer Particles and Surface-Enhanced Raman Scattering

ADVANCED MATERIALS, Issue 21 2010
Marc Bompart
Chemical nanosensors with a submicrometer core,shell composite design, based on a polymer core, a molecularly imprinted polymer (MIP) shell for specific analyte recognition, and an interlayer of gold nanoparticles for signal amplification, are described. SERS measurements on single nanosensors yield detection limits of 10,7,M for the , -blocker propranolol, several orders of magnitude lower than on plain MIP spheres. [source]


Biodegradable Thermoresponsive Microparticle Dispersions for Injectable Cell Delivery Prepared Using a Single-Step Process

ADVANCED MATERIALS, Issue 18 2009
Wenxin Wang
Surface-engineered microparticles with a biodegradable polymer core and a programmable thermoresponsive biocompatible copolymer corona are produced. The particles form free-flowing dispersions below 37,°C, but form porous space-filling gels above this temperature, as a result of chain collapse of the copolymer corona. When particles are mixed with biological materials, they form encapsulating gels that can support cell growth. [source]


A Novel Concept for Highly Oriented Carbon Nanotube Composite Tapes or Fibres with High Strength and Electrical Conductivity

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 11 2009
Hua Deng
Abstract A new concept is described for the creation of multifunctional polymer nanocomposite tapes (or fibres) that combines high stiffness and strength with good electrical properties and a low percolation threshold of carbon nanotubes (CNTs). The concept is based on a bicomponent tape (or fibre) construction consisting of a highly oriented polymer core and a conductive polymer composite (CPC) skin based on a polymer with a lower melting temperature than the core, enabling thermal annealing of these skins to improve conductivity through a dynamic percolation process while retaining the properties of the core and hence those of the tape (or fibre). The percolation threshold in the CPC skins of the highly drawn conductive bicomponent tapes could be decreased from 5.3 to 1.1,wt.-% after annealing. [source]


A Cascade FRET-Mediated Ratiometric Sensor for Cu2+Ions Based on Dual Fluorescent Ligand-Coated Polymer Nanoparticles

CHEMISTRY - A EUROPEAN JOURNAL, Issue 33 2009
Michel Frigoli Dr.
Abstract Core-shell type dual fluorescent nanoparticles (NPs) in the 16,nm diameter range with a selective ligand (cyclam) attached to the surface and two fluorophores,9,10-diphenyl-anthracene (donor, D) and pyrromethene PM,567 (acceptor, A),embedded within the polymer core were synthesized and their fluorescent and copper-sensing properties were studied and compared to single D -doped and A -doped NPs. The acceptor (A) and donor (D) dyes were chosen to allow two sequential Förster resonance energy transfer (FRET) processes from D to A and from the encapsulated dyes to copper complexes that form at the surface and act as quenchers. NPs with different D/A loads were readily obtained by two consecutive entrapments of the dyes. Dual NPs present tunable fluorescence emission that is dependent on the doping ratio. FRET from D to A results in sensitized emission from A upon excitation of D, with FRET efficiencies reaching 80,% at high acceptor loads. A 9-fold amplification of the signal of A is observed at high D -to- A ratios. Single- and dual-dye-doped NPs were used to detect the presence of cupric ions in water by using the quenching of fluorescence as a transduction signal. In accordance with the spectral overlaps and the values of the critical distance (R0) of D, and A,copper complex pairs, the acceptor is much more sensitive than the donor. In dual fluorescent NPs, the sensitized emission of A is efficiently attenuated whereas the remaining emission of D is much less affected, allowing the detection of copper in a ratiometric manner upon excitation at a single (D) wavelength. Dual-dye-doped NPs with the highest acceptor loads (23,A -per-NP) were found to be the most sensitive for the detection of copper over a wide range of concentrations (20,nM to 8.5,,M). Owing to its great convenience and modularity, the cascade FRET strategy based on dual fluorescent NPs holds great promise for the design of various sensing nanodevices. [source]